
Automation
or the lie that is DevOps

Ansible inventory from a csv file.
AWX on CentOS 8
Control Node Setup
Inventory from gathered facts.
oVirt - Windows Template
vCenter - Linux Templates
Windows Build Server
Windows Managed Node Setup

Ansible inventory from a csv
file.
General
Create an Ansible inventory in YAML format using the following steps.

Assuming that the CSV file has the following structure:

Local Use
1. Convert the CSV file to a YAML file format
2. Use Ansible's yaml_inventory_plugin to parse the YAML file and create the inventory

Sample playbook

Hostname,IP Address,Variable1,Variable2,Variable3
host1,192.168.1.1,value1,value2,value3
host2,192.168.1.2,value4,value5,value6

- hosts: localhost
 gather_facts: no

 vars:
 csv_file: /path/to/csv/file.csv
 yaml_file: /path/to/yaml/file.yaml

 tasks:
 - name: Convert CSV to YAML
 community.general.csv_to_yaml:
 path: "{{ csv_file }}"

In this example, the csv_to_yaml Ansible Galaxy module is used to convert the CSV file to YAML
format. The add_host module is then used to create the inventory based on the YAML file contents.

You can run this playbook with the following command:

AWX/AAP/Tower
Assuming that the CSV file has the following structure:

Here's an example Ansible playbook that reads a CSV file and creates an inventory in Ansible AWX,
or Ansible Automation Platform.

You'll need to fill in the values for tower_host , tower_username , tower_password , tower_org ,
tower_inventory_name , and csv_file .

The playbook has four tasks:

1. Load CSV file: This task loads the CSV file and stores the content in the csv_content
variable.

2. Create groups in Ansible Tower: This task creates groups in Ansible Tower based on the
values in the group column of the CSV file. The loop parameter iterates over the unique
values of the group column.

 output_file: "{{ yaml_file }}"

 - name: Create inventory from YAML
 ansible.builtin.add_host:
 name: "{{ item.Hostname }}"
 ansible_host: "{{ item['IP Address'] }}"
 variable1: "{{ item.Variable1 }}"
 variable2: "{{ item.Variable2 }}"
 variable3: "{{ item.Variable3 }}"
 loop: "{{ lookup('yaml', yaml_file) }}"

ansible-playbook -i localhost, inventory.yml

group,host,IP Address,Variable1,Variable2,Variable3
group1,host1,192.168.1.1,value1,value2,value3
group2,host2,192.168.1.2,value4,value5,value6
group2,host3,192.168.1.3,value4,value5,value6

3. Create hosts in Ansible Tower: This task creates hosts in Ansible Tower based on the
values in the host column of the CSV file. The loop parameter iterates over the unique
values of the host column.

4. Add host variables to Ansible Tower hosts: This task adds variables to the hosts in Ansible
Tower based on the values in the CSV file. The loop parameter iterates over each row in
the CSV file.

- name: Create Ansible Tower Inventory from CSV
 hosts: localhost
 gather_facts: no

 vars:
 csv_file: /path/to/csv/file.csv
 tower_host: <Ansible Tower Host>
 tower_username: <Ansible Tower Username>
 tower_password: <Ansible Tower Password>
 tower_org: <Ansible Tower Organization>
 tower_inventory_name: <Ansible Tower Inventory Name>

 tasks:
 - name: Load CSV file
 read_csv:
 path: "{{ csv_file }}"
 delimiter: ","
 register: csv_content

 - name: Create groups in Ansible Tower
 tower_group:
 tower_host: "{{ tower_host }}"
 tower_username: "{{ tower_username }}"
 tower_password: "{{ tower_password }}"
 tower_organization: "{{ tower_org }}"
 name: "{{ item.group }}"
 state: present
 loop: "{{ csv_content.list | unique('group') }}"

 - name: Create hosts in Ansible Tower
 tower_host:
 tower_host: "{{ tower_host }}"
 tower_username: "{{ tower_username }}"

A config file can be used in place of credentials being located in the playbook.

The ~/.tower_cli.cfg file is a configuration file used by the Ansible Tower CLI tool, tower-cli. It is
located in the home directory of the user running tower-cli.

This file stores configuration settings for tower-cli such as the URL of the Ansible Tower server, the
username and password used to authenticate to the server, and other options related to the tool's
behavior.

In this example, the [tower] section specifies the configuration settings for the Ansible Tower
server. The host parameter specifies the URL of the server, while the username and password
parameters specify the credentials used to authenticate to the server. The verify_ssl parameter can
be set to true or false to indicate whether SSL certificates should be verified when making requests
to the server.

 tower_password: "{{ tower_password }}"
 tower_organization: "{{ tower_org }}"
 inventory_name: "{{ tower_inventory_name }}"
 name: "{{ item.host }}"
 state: present
 loop: "{{ csv_content.list | unique('host') }}"

 - name: Add host variables to Ansible Tower hosts
 tower_host:
 tower_host: "{{ tower_host }}"
 tower_username: "{{ tower_username }}"
 tower_password: "{{ tower_password }}"
 tower_organization: "{{ tower_org }}"
 inventory_name: "{{ tower_inventory_name }}"
 name: "{{ item.host }}"
 variables: "{{ item.vars }}"
 state: present
 loop: "{{ csv_content.list }}"

[tower]
host = https://my-ansible-tower-server.com
username = my-username
password = my-password
verify_ssl = false

By default, tower-cli looks for the ~/.tower_cli.cfg file in the user's home directory. However, you
can specify a different location for the configuration file by setting the TOWERCLI_CONFIG
environment variable to the path of the file.

AWX on CentOS 8
Log in to your CentOS 8 server, open a terminal window, and issue the following commands:

How to install Docker and Docker
Compose
(Podman coming soon.)

We now need to install both Docker and Docker Compose. The first thing to do is add the necessary
repository with the command:

Once the repository is added, install the latest version of Docker with the command:

Start and enable the Docker engine with the commands:

Add your user to the docker group with the command:

Log out and log back in.

Install docker-compose via pip3 with the command:

sudo dnf install epel-release -y
sudo dnf install git gcc gcc-c++ ansible nodejs gettext device-mapper-persistent-data lvm2 bzip2 python3-pip -y

sudo dnf config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo

sudo dnf install docker-ce-3:18.09.1-3.el7 -y

sudo systemctl start docker
sudo systemctl enable docker

sudo usermod -aG docker $USER

sudo pip3 install docker-compose

Finally, set python to use Python 3 with the command:

How to install AWX
Now we can finally install AWX. Clone the latest release with the command:

Next, generate a secret encryption key with the command:

Copy the key that is generated to your clipboard.

Change into the newly downloaded AWX directory with the command:

Open the AWX inventory file with the command:

In that file, you'll need to (at a minimum), edit the following configuration options. First, locate the
line:

In that line, paste the secret key you generated earlier.

Next, look for the line:

Change the password to a strong, unique password.

Finally, look for the line that starts with:

alternatives --set python /usr/bin/python3

git clone https://github.com/ansible/awx.git

openssl rand -base64 30

cd awx/installer

nano inventory

secret_key=

admin_password=password

#awx_alternate_dns_servers=

Change that line to:

You can then go through the rest of the inventory file and edit as needed. But, the above changes
should result in a successful installation.

Create a directory for Postgres with the command:

Install AWX with the command:

This should take about five to10 minutes to complete.

SELinux and firewall
Before we can access the AWX site, we need to disable SELinux. Issue the command:

Change the line:

To:

Save and close the file. Restart your system so the changes will take effect.

The last step is to modify the firewall. This is done with the following commands:

awx_alternate_dns_servers="8.8.8.8,8.8.4.4"

sudo mkdir /var/lib/pgdocker

sudo ansible-playbook -i inventory install.yml

sudo nano /etc/sysconfig/selinux

SELINUX=enforcing

SELINUX=disabled

sudo firewall-cmd --zone=public --add-masquerade --permanent
sudo firewall-cmd --permanent --add-service=http
sudo firewall-cmd --permanent --add-service=https
sudo firewall-cmd --reload

Control Node Setup
A deployment controller could be a dedicated server or a workstation.

From command line
Clone the Private Data System repository

Review required settings.

From Tower or AWX
A:) Clone and modify for your own environment

B:) Create a new Project and assign to specific groups.

step-by-step coming soon

Additional Settings
Additional items for a Windows environment.

Download the Windows virtio drivers. These drivers are needed to Windows guests running on
KVM.

On a web server or software distribution server:

git clone https://github.com/clusterapps/PrivateSystem.git

git clone https://git.clusterapps.com/ansible/tower-pds-base.git

wget https://fedorapeople.org/groups/virt/virtio-win/virtio-win.repo -O /etc/yum.repos.d/virtio-win.repo
yum install -y virtio-win
cp /usr/share/virtio-win/virtio-win.iso /var/www/html/iso/

Inventory from gathered
facts.
Playbook example

- name: Generate YAML Inventory File from Gathered Facts
 hosts: all
 gather_facts: true
 tasks:
 - name: Gather facts from hosts
 setup:

 - name: Create YAML inventory file
 copy:
 content: |
 all:
 children:
 hosts:
 hosts:
 {{ hostvars[item].inventory_hostname }}:
 ansible_host: {{ hostvars[item].ansible_host }}
 ansible_user: {{ hostvars[item].ansible_user }}
 ansible_port: {{ hostvars[item].ansible_port }}
 ansible_ssh_pass: {{ hostvars[item].ansible_ssh_pass | default('') }}
 ansible_ssh_private_key_file: {{ hostvars[item].ansible_ssh_private_key_file | default('') }}
 inventory_hostname: {{ hostvars[item].inventory_hostname }}
 dest: /path/to/your/output/inventory.yaml
 mode: 0644
 loop: "{{ ansible_play_batch }}"
 run_once: yes

We define a play named "Generate YAML Inventory File from Gathered Facts" that runs on all hosts (hosts: all)
and enables fact gathering with gather_facts: true.

Make sure to replace /path/to/your/output/inventory.yaml with the actual path where you want to
save the generated YAML inventory file.

You can run this playbook with the ansible-playbook command:

In the first task, we use the setup module to gather facts from the hosts.

In the second task, we use the copy module to create the YAML inventory file. We loop through each host in
ansible_play_batch (which contains all the hosts that ran this play) and format the gathered facts into the
inventory file.

 ansible_host, ansible_user, ansible_port, ansible_ssh_pass, ansible_ssh_private_key_file, and
inventory_hostname are some of the facts we include in the inventory file.

 The inventory file is saved at the specified destination path (/path/to/your/output/inventory.yaml) with
appropriate file permissions (mode 0644).

oVirt - Windows Template
To create an Ansible playbook that deploys a Windows VM from a template on oVirt, customizes the
OS with sysprep, sets unique hostname and static IP, and performs other specified configurations,
follow the structure below. This example assumes you have a sysprep file ready for Windows
customization and your oVirt environment is properly set up for Ansible integration.

First, ensure you have the ovirt.ovirt collection installed, which includes modules for interacting
with oVirt. If not, you can install it using Ansible Galaxy:

Here's an example playbook that meets your requirements. You'll need to adjust variables and
possibly the paths to files (like the sysprep file) to match your environment.

ansible-galaxy collection install ovirt.ovirt

- name: Deploy and customize a Windows VM on oVirt
 hosts: localhost
 gather_facts: no
 collections:
 - ovirt.ovirt

 vars:
 ovirt_engine_url: https://ovirt-engine.example.com/ovirt-engine/api
 ovirt_engine_username: admin@internal
 ovirt_engine_password: your_password
 ovirt_engine_cafile: /path/to/your/ovirt-engine.ca
 vm_domain: "example.com"
 vm_subnet: "255.255.255.0"
 vm_gateway: "10.10.10.1"
 vm_dns: "10.1.10.10"
 additional_disk_size: 20GB
 machines:
 - { name: dc01, memory: 4GiB, cluster: kvm_worker, template: Windows2022Core, datasize: 90, storage:
data-kvm2, tag: lab, ip: 10.10.10.12}
 - { name: dc02, memory: 4GiB, cluster: kvm_worker, template: Windows2022Core, datasize: 90, storage:
data-kvm2, tag: lab, ip: 10.10.10.11}
 - { name: wadm01, memory: 8GiB, cluster: kvm_worker, template: Windows2022, datasize: 90, storage:

data-kvm2, tag: lab, ip: 10.10.10.10}

 tasks:
 - name: Log into oVirt
 ovirt.ovirt.ovirt_auth:
 url: "{{ ovirt_engine_url }}"
 username: "{{ ovirt_engine_username }}"
 password: "{{ ovirt_engine_password }}"
 ca_file: "{{ ovirt_engine_cafile }}"
 state: present

 - name: Deploy VMs
 ovirt.ovirt.ovirt_vm:
 auth: "{{ ovirt_auth }}"
 name: "{{ item.name }}.{{ vm_domain }}"
 template: "{{ item.template }}"
 cluster: "{{ item.cluster }}"
 cpu_cores: 2
 cpu_sockets: 1
 memory: "{{ item.memory }}"
 sysprep:
 hostname: "{{ item.name | upper}}"
 ip: "{{ item.ip }}"
 netmask: "{{ vm_subnet }}"
 gateway: "{{ vm_gateway }}"
 dns_servers: "{{ vm_dns }}"
 domain: "{{ vm_domain }}"
 root_password: "{{ vm_admin }}"
 state: present
 with_items:
 - "{{ machines }}"

 - name: Add Software Storage
 ovirt.ovirt.ovirt_disk:
 auth: "{{ ovirt_auth }}"
 name: "{{ item.name }}-Disk2"
 vm_name: "{{ item.name }}.{{ vm_domain }}"
 size: "{{ item.datasize }}GiB"
 format: cow
 interface: virtio_scsi

Remember to replace placeholders (like URLs, credentials, paths, domain names, and the storage
domain) with your actual data. Also, ensure your sysprep file is correctly set up in your template or
specified directly in the playbook if needed.

This playbook performs the following actions:

 storage_domain: "{{ item.storage }}"
 with_items:
 - "{{ machines }}"

 - name: Start VMs
 ovirt.ovirt.ovirt_vm:
 auth: "{{ ovirt_auth }}"
 name: "{{ item.name }}.{{ vm_domain }}"
 state: running
 with_items:
 - "{{ machines }}"

 - name: Tag machines
 ovirt.ovirt.ovirt_tag:
 auth: "{{ ovirt_auth }}"
 name: "{{ item.tag }}"
 state: attached
 vms:
 - "{{ item.name }}.{{ vm_domain }}"
 with_items:
 - "{{ machines }}"

 # Assuming the VM is to be powered on after setup
 - name: VMs should be running
 ovirt.ovirt.ovirt_vm:
 auth: "{{ ovirt_auth }}"
 name: "{{ vm_hostname }}"
 state: running

 - name: Logout from oVirt
 ovirt.ovirt.ovirt_auth:
 state: absent
 auth: "{{ ovirt_auth }}"

1. Logs into the oVirt engine.
2. Creates a VM from a specified template with a unique hostname and configures it with

sysprep.
3. Adds an additional 100GB disk to the VM.
4. Configures the VM's network interface.
5. Powers on the VM after setup.
6. Logs out from the oVirt engine.

Test this playbook in a development environment before using it in production. Adjustments may
be necessary based on your specific oVirt setup, Windows template, and network configuration.

vCenter - Linux Templates
To deploy multiple VMs with different hostnames and IP addresses while utilizing the customization
capabilities provided by the vmware_guest module in Ansible, you can use VMware's customization
specifications. This approach allows for more advanced customization options, such as setting the
domain, hostname, and network settings directly within the playbook. Below is an example of how
to modify the playbook to use VMware's customization feature for deploying 3 VMs with distinct
configurations:

Inventory
To create a separate inventory file with all the variables used in the provided playbook, you'll need
to organize these variables in a structured way. Ansible inventory files can be in INI or YAML
format, but for complex configurations like this, YAML is more suitable due to its support for
hierarchical data.

Below is an example of how to create an Ansible inventory file in YAML format (inventory.yml) that
defines all the variables required by your playbook. This example demonstrates setting up
variables for deploying three VMs, but you can adjust the quantities and details as needed:

all:
 vars:
 vcenter_hostname: vcenter.example.com
 vcenter_username: admin@vsphere.local
 vcenter_password: securepassword
 vcenter_datacenter: DC1
 vcenter_folder: /DC1/vm/ansible_managed_vms
 vcenter_cluster: Cluster1
 vm_template: CentOS_Template
 vm_network: VM_Network
 vm_netmask: 255.255.255.0
 vm_gateway: 192.168.1.1
 dns01: 8.8.8.8
 dns02: 8.8.4.4
 hosts:
 vm01:
 vm_name: vm01

 vm_ip: 192.168.1.101
 vm_ram: 2048
 vm_cores: 2
 vm_sockets: 1
 vm_notes: "VM01 Notes"
 vm_department: "department1"
 vm_application: "Application1"
 vm_role: "Role1"
 vm_env: "Development"
 vm_buildcode: "Build01"
 vm_lifecycle: "Lifecycle1"
 vm_contact: "Contact1"

 vm02:
 vm_name: vm02
 vm_ip: 192.168.1.102
 vm_ram: 4096
 vm_cores: 4
 vm_sockets: 2
 vm_notes: "VM02 Notes"
 vm_department: "department2"
 vm_application: "Application2"
 vm_role: "Role2"
 vm_env: "Testing"
 vm_buildcode: "Build02"
 vm_lifecycle: "Lifecycle2"
 vm_contact: "Contact2"

 vm03:
 vm_name: vm03
 vm_ip: 192.168.1.103
 vm_ram: 8192
 vm_cores: 4
 vm_sockets: 2
 vm_notes: "VM03 Notes"
 vm_department: "department3"
 vm_application: "Application3"
 vm_role: "Role3"
 vm_env: "Production"

Adjusting the Inventory
Hosts and Variables: The example above assumes you are deploying three VMs (vm01 ,
vm02 , and vm03). Each VM has its set of variables defined under hosts . You can add
more VMs or adjust the existing definitions as needed.
Global Variables: Variables that are common across all VMs are defined under all: vars .
This includes vCenter connection details, network configuration, and Infoblox provider
details. These can be overridden at the host level if necessary.
Customization: Tailor the inventory to match your environment's specifics, including
vCenter details, template names, network settings, and VM specifications.

This approach allows you to manage your infrastructure as code, making deployments repeatable
and reducing the likelihood of human error.

Playbook: deploy_vms.yml

 vm_buildcode: "Build03"
 vm_lifecycle: "Lifecycle3"
 vm_contact: "Contact3"

- name: Deploy Multiple VMs on vCenter
 hosts: all
 gather_facts: false

 tasks:
 - name: Setting Facts
 set_fact:
 vm_guest_name: "{{ vm_name | upper }}"
 vm_hostname: "{{ vm_name | lower }}"

 - name: Deploy or Clone Linux VM
 vmware_guest:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: no
 datacenter: "{{ vcenter_datacenter }}"
 folder: "{{ vcenter_folder }}"

 name: "{{ vm_guest_name }}"
 cluster: "{{ vcenter_cluster }}"
 state: poweredon
 template: "{{ vm_template }}"
 annotation: "{{ vm_notes }}"
 hardware:
 memory_mb: "{{ vm_ram }}"
 num_cpus: "{{ vm_cores }}"
 num_cpu_cores_per_socket: "{{ vm_sockets }}"
 networks:
 - name: "{{ vm_network }}"
 ip: "{{ vm_ip }}"
 netmask: "{{ vm_netmask }}"
 gateway: "{{ vm_gateway }}"
 wait_for_ip_address: yes
 wait_for_customization: yes
 cdrom:
 type: none
 customization:
 hostname: "{{ vm_hostname }}"
 domain: "example.com"
 timezone: "America/New_York"
 dns_servers:
 - "{{ dns01 }}"
 - "{{ dns02 }}"
 delegate_to: localhost
 register: vmcreate

 - name: Add Custom Attributes to the VM
 vmware_guest_custom_attributes:
 hostname: "{{ vcenter_hostname }}"
 username: "{{ vcenter_username }}"
 password: "{{ vcenter_password }}"
 validate_certs: no
 name: "{{ vm_guest_name }}"
 attributes:
 - name: Department
 value: "{{ vm_department | default('') }}"

Explanation of Each Task
1. Setting Facts: Converts the VM name to uppercase and lowercase versions for different

uses, such as the display name in vCenter (vm_guest_name) and the internal hostname of
the VM (vm_hostname).

2. Deploy or Clone Linux VM: Uses the vmware_guest module to either deploy a new VM or
clone an existing one from a template specified in the inventory. This task includes
configuring the VM's hardware specifications, network settings, and customization
specifications like the hostname and DNS settings. It waits for the IP address to be
assigned and customization to complete before proceeding.

3. Add Custom Attributes to the VM: Adds custom attributes to the newly created VM in
vCenter. These attributes can include metadata such as the department, application, role,
and environment the VM is associated with. This helps in organizing and managing VMs
based on these metadata.

Running the Playbook
To run this playbook, use the following command, ensuring you specify the inventory file:

This command tells Ansible to deploy VMs as configured in inventory.yml , applying the settings and
customizations specified for each VM.

Notes:

 - name: Application
 value: "{{ vm_application | default('') }}"
 - name: Role
 value: "{{ vm_role | default('') }}"
 - name: Environment
 value: "{{ vm_env | default('') }}"
 - name: Automation
 value: "Baseline"
 - name: buildcode
 value: "{{ vm_buildcode | default('') }}"
 - name: lifecycle
 value: "{{ vm_lifecycle | default('') }}"
 - name: Contact
 value: "{{ vm_contact | default('') }}"

ansible-playbook -i inventory.yml deploy_vms.yml

Template Requirements: The template you use must be prepared for customization.
For Linux VMs, ensure VMware Tools is installed, and the Perl scripting language is
available for the customization scripts to run.
Customization Script: VMware's customization mechanism uses a script that runs on
the first boot. If the customization does not apply, troubleshooting may involve checking
that VMware Tools is correctly installed and that the template is properly prepared for
cloning and customization.
Ansible and VMware Versions: Ensure you are using recent versions of Ansible and the
VMware modules, as improvements and bug fixes are regularly added.

This method leverages VMware's powerful customization engine, allowing for a wide range of
customization options beyond what was demonstrated here.

Windows Build Server
A service for building custom WIM images for deployments.

The WIM images may contain additional drivers or post setup deployment scripts.

WIM images can be server or desktop OS and are useful in virtual and physical environment
deployments.

Build
To build the server, start with a fresh install of Windows Server. This example will be based on
Windows Server 2016. The example should work on Windows Server 2019 with little to no
modification.

Only a few modifications were changed to the installation.

Server name
Network Settings
Driver installation
Disable IE lock down settings. (Needed to download drivers)
Create new local user in the administrators group. (Security will be configured later)
Remote Desktop enabled for easy of use.
Ansible prep powershell script run. Download Here.

Download the Windows Builder role or Private Data System playbook to deploy the build server.

Update the inventory file.

Run the deploy-winbuild playbook.

Configure
Updates.
The Windows update portion of the build can be very time consuming. To speed up the build time
and the WIM updating process, the updates will be downloaded ahead of time. This is not
necessary to run manually since the buld scripts will run the updates tools too.

Sign in to the Windows Build Server and go to the <wsus-offline-updater> folder.

https://git.clusterapps.com/snippets/4/raw
https://git.clusterapps.com/ansible/ansible-role-win_builder

Run the UpdateGenerator.exe

Select the version(s) of Windows to download updates for.

https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/8hwEWOwnhtuOodYB-UpdateGenerator-Explorer.png

This example will only download updates for Windows 10 and Windows Server 2016.

After a few moments the UpdateGenerator will begin to run.

https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/y1Fnvw2s1WIkdDr9-UpdateGenerator.png
https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/xOPso0HtZHbedmiV-UpdateGenoerator-running.png

This process may take a very long time depending on the number of versions selected and if Office
was included.

When the process is complete, a prompt will appear to review the logs.

Drivers

Sign in to the Windows Build Server and go to the source\Builder\Drivers folder.

There are folders for each Windows version that can be deployed. The boot directory is for WinPE
and 10.0 is for Windows Server 2016. Note that Windows Server 2019 will also build in the 10.0
folder. (For now)

Copy the drivers that are needed to the folders. The folders are recursively scanned, so add as
many as you need. To keep the WinPE size to a minimum, only place drivers required for install in
the boot folder. At a minimum, this would be the storage and networking drivers. For this example,
the hypervisor is KVM. The virtstor and netkvm drivers were added to the folders. For the actual OS
image place all of the needed inf in the folder. Multiple drivers for multiple hardware platforms can
be copied to the folders to allow for a simple image to be used on many platforms.

If drivers require a setup file to be run, we'll add those to the post install playbooks. More on that
later.

https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/TncK6oEfMtoE7kEB-UpdateGenerator-Complete.png
https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/BPBbsPzmxnlZdhvW-Drivers-folder.png

Images

There are two base WIM files that will be needed to build the custom ones. You will need a copy of
the Windows Server ISO along with the Windows Assessment and Deployment Kit, and the
Windows Assessment and Deployment Kit Windows Preinstallation Environment Add-on. Both
Windows ADK components are installed when using the deploy-winbuild playbook.

boot.wim: Copy the winpe.wim file from C:\Program Files (x86)\Windows Kits\10\Assessment and
Deployment Kit\Windows Preinstallation Environment\amd64\en-us to \source\Builder\SourceWims\boot and
rename the files boot.wim.

install.wim: You will need a licensed copy of the Windows Server installation media for this step.
If you configured the playbook to download the ISO file it will be located in the \source\ISO directory
on the build system. Copy the DVD:\sources\install.wim file to \source\Builder\SourceWims\boot . Do not
change the file name.

Building Images
Once all of the base requirements are in place, it is time to run the build scripts. These script are
modified versions of the Foreman build scripts. Open the \source\Builder folder and run the Build-
All.ps1 in an elevated PowerShell console.

https://github.com/LiamLeane/ForemanWimScripts
https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/VWmKbn30IESn35Cp-Winbuild-scripts.png

After the build scrips have created the new WIM files, they will be located in the \Deploy directory
on the build server. Review the date modified and the file size to determine that the file has
recently been updated. Unless the build scripts fail, most error messages can be ignored.

The deploy-winbuild playbook automatically shared this folder to the network. These files are now
ready for deployment and can be used with your favorite deployment tools.

https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/bxfJ03XIT93tCNFQ-WinBuild-BuildAll.png
https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/7P8jkp4Y3jupRk1n-WinBuild-Deploy.png

Windows Managed Node
Setup
Setup a Windows host - local UI
Setting up a Windows Server to be managed by Ansible involves a few key steps. Ansible
communicates with Windows servers over WinRM (Windows Remote Management), which is a
Windows-native remote management protocol based on WS-Management (Web Services-
Management). The setup process generally includes configuring WinRM on the Windows server and
preparing the Ansible control machine to manage Windows hosts.

Here are the steps to prepare a Windows Server for management with Ansible:

1. Configure WinRM on the Windows
Server
The easiest way to configure WinRM for Ansible is to use the ConfigureRemotingForAnsible.ps1 script,
which is provided in the Ansible documentation. This script sets up WinRM to use basic
authentication and configures it to allow connections from Ansible.

1. Download the Script: On the Windows Server, open PowerShell as an Administrator and
run the following command to download the script:

Invoke-WebRequest -Uri "https://raw.githubusercontent.com/ansible/ansible-
documentation/devel/examples/scripts/ConfigureRemotingForAnsible.ps1" -OutFile
"ConfigureRemotingForAnsible.ps1"

2. Run the Script: Execute the script you just downloaded:

This script will configure WinRM to use HTTP (port 5985), enable basic authentication, and
create a firewall rule to allow WinRM traffic.

.\ConfigureRemotingForAnsible.ps1

3. Note: For a production environment, it's recommended to use HTTPS (port 5986) with
certificate-based authentication for increased security. This setup is more complex and
requires installing a valid certificate on the Windows Server and additional WinRM

configuration.

2. Prepare the Ansible Control Machine
On the Ansible control machine, which is typically a Linux system, you need to install pywinrm to
enable WinRM support. This can be done using pip:

3. Configure Ansible Inventory
Edit your Ansible inventory file to include your Windows hosts. You can define them under a
specific group [windows] and specify the necessary variables:

Security Note: Storing passwords in plaintext in the inventory file is not secure. Consider using
Ansible Vault to encrypt sensitive data.

4. Test the Configuration
Now, test your setup by running a simple Ansible command to ping the Windows server:

If everything is configured correctly, the win_ping module should return a success message.

Additional Notes
Ensure network connectivity between the Ansible control machine and the Windows
Server, specifically that the required WinRM port (5985 for HTTP, 5986 for HTTPS) is open.

pip install pywinrm

[windows]
windows-server.example.com

[windows:vars]
ansible_user=Administrator
ansible_password=YourPassword
ansible_connection=winrm
ansible_winrm_server_cert_validation=ignore

ansible windows -m win_ping

The setup process might vary slightly depending on the specific version of Windows
Server you are using.
For production environments, it's highly recommended to use Kerberos or NTLM with
WinRM over HTTPS for secure authentication and encryption.

By following these steps, you should have a Windows Server ready to be managed by Ansible.

Remote install / fleet deployments
To remotely set up a Windows Server to be managed by Ansible, you need to configure WinRM
(Windows Remote Management) on the target server. This process can be challenging since it
ideally requires remote execution of a configuration script on the Windows server. If you have
physical access or remote desktop (RDP) access to the server, it's usually easier to set up WinRM
directly. However, if you need to do this entirely remotely, here are some methods you can
consider:

1. Using PowerShell Remoting
If PowerShell Remoting is already enabled on the target server, you can use it to configure WinRM
for Ansible.

1. Connect to the Windows Server via PowerShell Remoting:

$credential = Get-Credential
Enter-PSSession -ComputerName <Target-Server-IP-or-Hostname> -Credential $credential

2. Run the Ansible WinRM Configuration Script: Download and execute the
ConfigureRemotingForAnsible.ps1 script within the remote session.

Invoke-WebRequest -Uri "https://raw.githubusercontent.com/ansible/ansible-
documentation/devel/examples/scripts/ConfigureRemotingForAnsible.ps1" -OutFile
"ConfigureRemotingForAnsible.ps1"
.\ConfigureRemotingForAnsible.ps1

3. Exit the Remote Session:

Exit-PSSession

2. Using Group Policy (For Domain-Joined
Servers)

If the server is part of an Active Directory domain, you can use Group Policy to configure WinRM on
multiple servers at once.

1. Create a new GPO in your Group Policy Management Console.
2. Edit the GPO to include the WinRM service configuration. Typically, you need to set up

the service to start automatically and configure the listener for HTTP and/or HTTPS.
3. Link the GPO to an OU that contains your servers.

3. Using a Configuration Management Tool
If you have a configuration management tool like SCCM (System Center Configuration Manager),
you can use it to push out a script or configuration to enable and configure WinRM on Windows
servers.

4. Using a Remote Execution Tool
If you have access to a remote execution tool like PSExec (part of Sysinternals), you can use it to
run commands or scripts on the remote Windows server.

For example:

Security Considerations
When setting up WinRM, especially over HTTP, be aware of security implications. HTTP
traffic is not encrypted, which can expose sensitive data. For production environments,
HTTPS with certificate-based authentication is recommended.
Ensure that the WinRM service is properly secured and accessible only from trusted
networks or hosts.

Testing the Setup
After setting up WinRM, test the connection from your Ansible control machine:

Replace inventory_file with the path to your Ansible inventory file where your Windows host is
defined.

psexec \\target-server -u username -p password -h powershell.exe -ExecutionPolicy Bypass -File
ConfigureRemotingForAnsible.ps1

ansible windows -i inventory_file -m win_ping

Conclusion
The method you choose depends on your current infrastructure, the tools you have available, and
your access level to the Windows Server. For security and simplicity, direct access (like RDP) to set
up WinRM is generally preferred, but in environments where this is not feasible, remote methods
are necessary.

