Deploy and
Configure

Installation guides for popular and unknown software packages.

e Automation

o Ansible inventory from a csv file.

AWX on CentOS 8

o

o

Control Node Setup

o

Inventory from gathered facts.

o

oVirt - Windows Template

o

vCenter - Linux Templates

Windows Build Server

o

o

Windows Managed Node Setup

e Citrix Virtual Apps and Desktops

o Export and Import Policies

o

Intro to Citrix

o

Upgrading Client VDA

o

Upgrading Components

o

Upgrading the Site and Database

e |dentity and Access Management

o Foreman Smart Proxy - FreelPA DNS
o IPA - Basic Commands

o IPA - Fast and Dirty

e Oracle Things

APEX on Docker

o

o

OCI CLI setup
Oracle Database 19c EE

o

Oracle Database 21c

o

o

Oracle Enterprise Manager 13.5 on OL8

o

Oracle Enterprise Manager Cloud Control 13c

o

Oracle ORDS and Apache

o

Oracle Response Files

Oracle XE and APEX on CentOS 7

o

e Web Applications

o BookStack on CentOS 7

o Evergreen ILS on Ubuntu 18.04
o Matomo on CentOS 7

o mod_GeolP on CentOS 7

e XCP-ng / Citrix Hypervisor

o Check boot filesystem

o Generate SSL Certificates
o Install - Network

o Install - Physical Media

o Networking

o Storage Repositories

o VM Networking

o ZFS

Automation

or the lie that is DevOps

Automation

Ansible inventory from a csv
file.

General

Create an Ansible inventory in YAML format using the following steps.

Assuming that the CSV file has the following structure:

Hostname,|P Address,Variablel,Variable2,Variable3
host1,192.168.1.1,valuel,value2,value3
host2,192.168.1.2,value4,value5,value6

Local Use

1. Convert the CSV file to a YAML file format
2. Use Ansible's yaml_inventory plugin to parse the YAML file and create the inventory

Sample playbook

- hosts: localhost

gather_facts: no

vars:
csv_file: /path/to/csv/file.csv

yaml_file: /path/to/yaml/file.yaml

tasks:
- name: Convert CSV to YAML

community.general.csv_to_yaml:

path: "{{ csv_file }}"
output file: "{{ yaml_file }}"

- name: Create inventory from YAML

ansible.builtin.add_host:
name: "{{ item.Hostname }}"
ansible_host: "{{ item['IP Address'] } }"
variablel: "{{ item.Variablel }}"
variable2: "{{ item.Variable2 }}"
variable3: "{{ item.Variable3 }}"

loop: "{{ lookup('yaml', yaml_file) }}"

In this example, the csv_to_yaml Ansible Galaxy module is used to convert the CSV file to YAML
format. The add_host module is then used to create the inventory based on the YAML file contents.

You can run this playbook with the following command:

ansible-playbook -i localhost, inventory.yml

AWX/AAP/Tower

Assuming that the CSV file has the following structure:

group,host,IP Address,Variablel,Variable2,Variable3
groupl,hostl1,192.168.1.1,valuel,value2,value3
group2,host2,192.168.1.2,value4,value5,value6
group2,host3,192.168.1.3,value4,value5,value6

Here's an example Ansible playbook that reads a CSV file and creates an inventory in Ansible AWX,
or Ansible Automation Platform.

You'll need to fill in the values for tower host, tower username, tower password , tower org,

tower_inventory name , and csv_file .
The playbook has four tasks:

1. Load CSV file: This task loads the CSV file and stores the content in the csv_content

variable.
2. Create groups in Ansible Tower: This task creates groups in Ansible Tower based on the
values in the group column of the CSV file. The loop parameter iterates over the unique

values of the group column.

3. Create hosts in Ansible Tower: This task creates hosts in Ansible Tower based on the
values in the host column of the CSV file. The loop parameter iterates over the unique
values of the host column.

4. Add host variables to Ansible Tower hosts: This task adds variables to the hosts in Ansible
Tower based on the values in the CSV file. The loop parameter iterates over each row in
the CSV file.

- name: Create Ansible Tower Inventory from CSV
hosts: localhost

gather_facts: no

vars:
csv_file: /path/to/csv/file.csv
tower_host: <Ansible Tower Host>
tower_username: <Ansible Tower Username>
tower_password: <Ansible Tower Password>
tower_org: <Ansible Tower Organization>

tower_inventory_name: <Ansible Tower Inventory Name>

tasks:
- name: Load CSV file
read_csv:
path: "{{ csv file }}"
delimiter: ","

register: csv_content

- name: Create groups in Ansible Tower
tower_group:

tower_host: "{{ tower_host }}"
tower_username: "{{ tower_username }}"
tower_password: "{{ tower_password }}"
tower_organization: "{{ tower_org }}"
name: "{{ item.group }}"
state: present

loop: "{{ csv_content.list | unique(‘group') }}"

- name: Create hosts in Ansible Tower
tower_host:
tower_host: "{{ tower_host }}"

tower_username: "{{ tower_username }}"

tower_password: "{{ tower_password }}"
tower_organization: "{{ tower_org }}"
inventory_name: "{{ tower_inventory_name }}"
name: "{{ item.host }}"

state: present

loop: "{{ csv_content.list | unique('host') }}"

- name: Add host variables to Ansible Tower hosts
tower_host:

tower_host: "{{ tower_host }}"
tower_username: "{{ tower_username }}"
tower_password: "{{ tower_password }}"
tower_organization: "{{ tower_org }}"
inventory_name: "{{ tower_inventory_name }}"
name: "{{ item.host }}"
variables: "{{ item.vars }}"
state: present

loop: "{{ csv_content.list }}"

A config file can be used in place of credentials being located in the playbook.

The ~/.tower _cli.cfg file is a configuration file used by the Ansible Tower CLI tool, tower-cli. It is
located in the home directory of the user running tower-cli.

This file stores configuration settings for tower-cli such as the URL of the Ansible Tower server, the
username and password used to authenticate to the server, and other options related to the tool's
behavior.

[tower]

host = https://my-ansible-tower-server.com
username = my-username

password = my-password

verify_ssl = false

In this example, the [tower] section specifies the configuration settings for the Ansible Tower
server. The host parameter specifies the URL of the server, while the username and password
parameters specify the credentials used to authenticate to the server. The verify_ssl parameter can
be set to true or false to indicate whether SSL certificates should be verified when making requests
to the server.

By default, tower-cli looks for the ~/.tower_cli.cfg file in the user's home directory. However, you
can specify a different location for the configuration file by setting the TOWERCLI_CONFIG
environment variable to the path of the file.

Automation

AWX on CentQOS 8

Log in to your CentOS 8 server, open a terminal window, and issue the following commands:

sudo dnf install epel-release -y

sudo dnf install git gcc gcc-c++ ansible nodejs gettext device-mapper-persistent-data lvm?2 bzip2 python3-pip -y

How to install Docker and Docker
Compose

(Podman coming soon.)

We now need to install both Docker and Docker Compose. The first thing to do is add the necessary
repository with the command:

sudo dnf config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo

Once the repository is added, install the latest version of Docker with the command:

sudo dnf install docker-ce-3:18.09.1-3.el7 -y

Start and enable the Docker engine with the commands:

sudo systemctl start docker

sudo systemctl enable docker
Add your user to the docker group with the command:

sudo usermod -aG docker $USER

Log out and log back in.

Install docker-compose via pip3 with the command:

sudo pip3 install docker-compose

Finally, set python to use Python 3 with the command:

alternatives --set python /usr/bin/python3

How to install AWX

Now we can finally install AWX. Clone the latest release with the command:

git clone https://github.com/ansible/awx.git

Next, generate a secret encryption key with the command:

openssl rand -base64 30

Copy the key that is generated to your clipboard.

Change into the newly downloaded AWX directory with the command:

cd awx/installer

Open the AWX inventory file with the command:

nano inventory

In that file, you'll need to (at a minimum), edit the following configuration options. First, locate the
line:

secret_key=

In that line, paste the secret key you generated earlier.

Next, look for the line:

admin_password=password
Change the password to a strong, unique password.

Finally, look for the line that starts with:

#awx_alternate_dns_servers=

Change that line to:

awx_alternate_dns_servers="8.8.8.8,8.8.4.4"

You can then go through the rest of the inventory file and edit as needed. But, the above changes
should result in a successful installation.

Create a directory for Postgres with the command:
sudo mkdir /var/lib/pgdocker

Install AWX with the command:

sudo ansible-playbook -i inventory install.yml

This should take about five tol0 minutes to complete.

SELinux and firewall

Before we can access the AWX site, we need to disable SELinux. Issue the command:

sudo nano /etc/sysconfig/selinux

Change the line:

SELINUX=enforcing

To:

SELINUX=disabled

Save and close the file. Restart your system so the changes will take effect.

The last step is to modify the firewall. This is done with the following commands:

sudo firewall-cmd --zone=public --add-masquerade --permanent
sudo firewall-cmd --permanent --add-service=http
sudo firewall-cmd --permanent --add-service=https

sudo firewall-cmd --reload

Automation

Control Node Setup

A deployment controller could be a dedicated server or a workstation.

From command line

Clone the Private Data System repository

git clone https://github.com/clusterapps/PrivateSystem.git
Review required settings.

From Tower or AWX

A:) Clone and modify for your own environment

git clone https://git.clusterapps.com/ansible/tower-pds-base.git

B:) Create a new Project and assign to specific groups.
step-by-step coming soon
Additional Settings

Additional items for a Windows environment.

Download the Windows virtio drivers. These drivers are needed to Windows guests running on
KVM.

On a web server or software distribution server:

wget https://fedorapeople.org/groups/virt/virtio-win/virtio-win.repo -O /etc/yum.repos.d/virtio-win.repo
yum install -y virtio-win

cp /usr/share/virtio-win/virtio-win.iso /var/www/html/iso/

Automation

Inventory from gathered
facts.

Playbook example

- name: Generate YAML Inventory File from Gathered Facts
hosts: all
gather facts: true
tasks:
- name: Gather facts from hosts

setup:

- name: Create YAML inventory file
copy:
content: |
all:
children:
hosts:
hosts:
{{ hostvars[item].inventory_hostname }}:
ansible_host: {{ hostvars[item].ansible_host }}
ansible_user: {{ hostvars[item].ansible_user }}
ansible_port: {{ hostvars[item].ansible_port }}
ansible_ssh_pass: {{ hostvars[item].ansible_ssh_pass | default(") }}
ansible_ssh_private key file: {{ hostvars[item].ansible_ssh_private key file | default(") }}
inventory_hostname: {{ hostvars[item].inventory_hostname }}
dest: /path/to/your/output/inventory.yaml
mode: 0644
loop: "{{ ansible_play_batch }}"

run_once: yes

We define a play named "Generate YAML Inventory File from Gathered Facts" that runs on all hosts (hosts: all)

and enables fact gathering with gather_facts: true.

In the first task, we use the setup module to gather facts from the hosts.

In the second task, we use the copy module to create the YAML inventory file. We loop through each host in
ansible_play_batch (which contains all the hosts that ran this play) and format the gathered facts into the

inventory file.

ansible_host, ansible_user, ansible_port, ansible_ssh_pass, ansible_ssh_private_key file, and

inventory_hostname are some of the facts we include in the inventory file.

The inventory file is saved at the specified destination path (/path/to/your/output/inventory.yaml) with

appropriate file permissions (mode 0644).

Make sure to replace /path/to/your/output/inventory.yaml with the actual path where you want to
save the generated YAML inventory file.

You can run this playbook with the ansible-playbook command:

Automation

oVirt - Windows Template

To create an Ansible playbook that deploys a Windows VM from a template on oVirt, customizes the
OS with sysprep, sets unique hostname and static IP, and performs other specified configurations,
follow the structure below. This example assumes you have a sysprep file ready for Windows
customization and your oVirt environment is properly set up for Ansible integration.

First, ensure you have the ovirt.ovirt collection installed, which includes modules for interacting
with oVirt. If not, you can install it using Ansible Galaxy:

ansible-galaxy collection install ovirt.ovirt

Here's an example playbook that meets your requirements. You'll need to adjust variables and
possibly the paths to files (like the sysprep file) to match your environment.

- name: Deploy and customize a Windows VM on oVirt
hosts: localhost
gather_facts: no
collections:

- ovirt.ovirt

vars:
ovirt_engine_url: https://ovirt-engine.example.com/ovirt-engine/api
ovirt_engine_username: admin@internal
ovirt_engine_password: your_password
ovirt_engine_cafile: /path/to/your/ovirt-engine.ca
vm_domain: "example.com"
vm_subnet: "255.255.255.0"
vm_gateway: "10.10.10.1"
vm_dns: "10.1.10.10"
additional_disk_size: 20GB
machines:
- { name: dc01, memory: 4GiB, cluster: kvm_worker, template: Windows2022Core, datasize: 90, storage:
data-kvm2, tag: lab, ip: 10.10.10.12}
- { name: dc02, memory: 4GiB, cluster: kvm_worker, template: Windows2022Core, datasize: 90, storage:

data-kvm2, tag: lab, ip: 10.10.10.11}

- { name: wadmO01, memory: 8GiB, cluster: kvm_worker, template: Windows2022, datasize: 90, storage:

data-kvm2, tag: lab, ip: 10.10.10.10}

tasks:
- name: Log into oVirt
ovirt.ovirt.ovirt_auth:
url: "{{ ovirt_engine_url }}"
username: "{{ ovirt_engine_username }}"
password: "{{ ovirt_engine_password }}"
ca_file: "{{ ovirt_engine_cafile }}"

state: present

- name: Deploy VMs
ovirt.ovirt.ovirt_vm:
auth: "{{ ovirt_auth }}"
name: "{{ item.name }}.{{ vm_domain }}"
template: "{{ item.template }}"
cluster: "{{ item.cluster }}"
Cpu_cores: 2
cpu_sockets: 1
memory: "{{ item.memory }}"
sysprep:
hostname: "{{ item.name | upper}}"
ip: "{{ item.ip }}"
netmask: "{{ vm_subnet }}"
gateway: "{{ vm_gateway }}"
dns_servers: "{{ vm_dns }}"
domain: "{{ vm_domain }}"
root_password: "{{ vm_admin }}"
state: present
with_items:

- "{{ machines }}"

- name: Add Software Storage
ovirt.ovirt.ovirt_disk:
auth: "{{ ovirt_auth }}"
name: "{{ item.name }}-Disk2"
vm_name: "{{ item.name }}.{{ vm_domain }}"
size: "{{ item.datasize }}GiB"

format: cow

interface: virtio_scsi
storage_domain: "{{ item.storage }}"
with_items:

- "{{ machines }}"

- name: Start VMs
ovirt.ovirt.ovirt_vm:
auth: "{{ ovirt_auth }}"
name: "{{ item.name }}.{{ vm_domain }}"
state: running
with_items:

- "{{ machines }}"

- name: Tag machines
ovirt.ovirt.ovirt_tag:
auth: "{{ ovirt_auth }}"
name: "{{ item.tag }}"
state: attached
vms:
-"{{ item.name }}.{{ vm_domain }}"
with_items:

- "{{ machines }}"

Assuming the VM is to be powered on after setup
- name: VMs should be running
ovirt.ovirt.ovirt_vm:
auth: "{{ ovirt_auth }}"
name: "{{ vm_hostname }}"

state: running

- name: Logout from oVirt
ovirt.ovirt.ovirt_auth:
state: absent

auth: "{{ ovirt_auth }}"

Remember to replace placeholders (like URLs, credentials, paths, domain names, and the storage
domain) with your actual data. Also, ensure your sysprep file is correctly set up in your template or

specified directly in the playbook if needed.

This playbook performs the following actions:

1. Logs into the oVirt engine.

Creates a VM from a specified template with a unique hostname and configures it with
sysprep.

Adds an additional 100GB disk to the VM.

Configures the VM's network interface.

Powers on the VM after setup.

Logs out from the oVirt engine.

N

oUW

Test this playbook in a development environment before using it in production. Adjustments may
be necessary based on your specific oVirt setup, Windows template, and network configuration.

Automation

vCenter - Linux Templates

To deploy multiple VMs with different hostnames and IP addresses while utilizing the customization
capabilities provided by the vmware guest module in Ansible, you can use VMware's customization
specifications. This approach allows for more advanced customization options, such as setting the
domain, hostname, and network settings directly within the playbook. Below is an example of how
to modify the playbook to use VMware's customization feature for deploying 3 VMs with distinct
configurations:

Inventory

To create a separate inventory file with all the variables used in the provided playbook, you'll need
to organize these variables in a structured way. Ansible inventory files can be in INI or YAML
format, but for complex configurations like this, YAML is more suitable due to its support for
hierarchical data.

Below is an example of how to create an Ansible inventory file in YAML format (inventory.yml) that
defines all the variables required by your playbook. This example demonstrates setting up
variables for deploying three VMs, but you can adjust the quantities and details as needed:

all:
vars:

vcenter_hostname: vcenter.example.com
vcenter_username: admin@vsphere.local
vcenter_password: securepassword
vcenter_datacenter: DC1
vcenter_folder: /DC1l/vm/ansible_managed_vms
vcenter_cluster: Clusterl
vm_template: CentOS_Template
vm_network: VM_Network
vm_netmask: 255.255.255.0
vm_gateway: 192.168.1.1
dns01: 8.8.8.8
dns02: 8.8.4.4
hosts:

vmO1:

vm_name: vmO01

vm_ip: 192.168.1.101
vm_ram: 2048

vm_cores: 2

vm_sockets: 1

vm_notes: "VMO01 Notes"
vm_department: "departmentl”
vm_application: "Applicationl"
vm_role: "Rolel"

vm_env: "Development"
vm_buildcode: "Build01"
vm_lifecycle: "Lifecyclel"

vm_contact: "Contactl"

vmO02:
vm_name: vmO02
vm_ip: 192.168.1.102
vm_ram: 4096
vm_cores: 4
vm_sockets: 2
vm_notes: "VM02 Notes"
vm_department: "department2"
vm_application: "Application2"
vm_role: "Role2"
vm_env: "Testing"
vm_buildcode: "Build02"
vm_lifecycle: "Lifecycle2"

vm_contact: "Contact2"

vmO03:
vm_name: vmO03
vm_ip: 192.168.1.103
vm_ram: 8192
vm_cores: 4
vm_sockets: 2
vm_notes: "VMO03 Notes"
vm_department: "department3"
vm_application: "Application3"

vm_role: "Role3"

vm_env: "Production”
vm_buildcode: "Build03"
vm_lifecycle: "Lifecycle3"

vm_contact: "Contact3"

Adjusting the Inventory

e Hosts and Variables: The example above assumes you are deploying three VMs (vmo01 ,
vm02 , and vmo03). Each VM has its set of variables defined under hosts . You can add
more VMs or adjust the existing definitions as needed.

e Global Variables: Variables that are common across all VMs are defined under all: vars .
This includes vCenter connection details, network configuration, and Infoblox provider
details. These can be overridden at the host level if necessary.

e Customization: Tailor the inventory to match your environment's specifics, including
vCenter details, template names, network settings, and VM specifications.

This approach allows you to manage your infrastructure as code, making deployments repeatable
and reducing the likelihood of human error.

Playbook: deploy vms.yml

- name: Deploy Multiple VMs on vCenter
hosts: all

gather_facts: false

tasks:
- name: Setting Facts
set fact:
vm_guest_name: "{{ vm_name | upper }}"

vm_hostname: "{{ vm_name | lower }}"

- name: Deploy or Clone Linux VM
vmware_guest:
hostname: "{{ vcenter_hostname }}"
username: "{{ vcenter_username }}"
password: "{{ vcenter_password }}"
validate_certs: no

datacenter: "{{ vcenter_datacenter }}"

folder: "{{ vcenter_folder }}"
name: "{{ vm_guest_ name }}"
cluster: "{{ vcenter_cluster }}"
state: poweredon
template: "{{ vm_template }}"
annotation: "{{ vm_notes }}"
hardware:
memory_mb: "{{ vm_ram }}"
num_cpus: "{{ vm_cores }}"
num_cpu_cores_per_socket: "{{ vm_sockets }}"
networks:
-name: "{{ vm_network }}"
ip: "{{ vm_ip }}"
netmask: "{{ vm_netmask }}"
gateway: "{{ vm_gateway }}"
wait_for_ip_address: yes
wait_for_customization: yes
cdrom:
type: none
customization:
hostname: "{{ vm_hostname }}"
domain: "example.com"
timezone: "America/New_York"
dns_servers:
-"{{ dnsO1 }}"
-"{{ dns02 }}"
delegate_to: localhost

register: vmcreate

- name: Add Custom Attributes to the VM
vmware_guest_custom_attributes:

hostname: "{{ vcenter_hostname }}"
username: "{{ vcenter_username }}"
password: "{{ vcenter_password }}"
validate_certs: no
name: "{{ vm_guest_name }}"
attributes:

- name: Department

value: "{{ vm_department | default(") }}"
- name: Application

value: "{{ vm_application | default(") }}"
- hame: Role

value: "{{ vm_role | default('') }}"
- name: Environment

value: "{{ vm_env | default(") }}"
- name: Automation

value: "Baseline"
- hame: buildcode

value: "{{ vm_buildcode | default(") }}"
- name: lifecycle

value: "{{ vm_lifecycle | default(") }}"
- name: Contact

value: "{{ vm_contact | default(") }}"

Explanation of Each Task

1. Setting Facts: Converts the VM name to uppercase and lowercase versions for different
uses, such as the display name in vCenter (vm_guest name) and the internal hostname of
the VM (vm_hostname).

2. Deploy or Clone Linux VM: Uses the vmware_guest module to either deploy a new VM or
clone an existing one from a template specified in the inventory. This task includes
configuring the VM's hardware specifications, network settings, and customization
specifications like the hostname and DNS settings. It waits for the IP address to be
assighed and customization to complete before proceeding.

3. Add Custom Attributes to the VM: Adds custom attributes to the newly created VM in
vCenter. These attributes can include metadata such as the department, application, role,
and environment the VM is associated with. This helps in organizing and managing VMs
based on these metadata.

Running the Playbook

To run this playbook, use the following command, ensuring you specify the inventory file:

ansible-playbook -i inventory.yml deploy_vms.yml

This command tells Ansible to deploy VMs as configured in inventory.yml , applying the settings and
customizations specified for each VM.

Notes:

e Template Requirements: The template you use must be prepared for customization.
For Linux VMs, ensure VMware Tools is installed, and the Perl scripting language is
available for the customization scripts to run.

e Customization Script: VMware's customization mechanism uses a script that runs on
the first boot. If the customization does not apply, troubleshooting may involve checking
that VMware Tools is correctly installed and that the template is properly prepared for

cloning and customization.
e Ansible and VMware Versions: Ensure you are using recent versions of Ansible and the

VMware modules, as improvements and bug fixes are regularly added.

This method leverages VMware's powerful customization engine, allowing for a wide range of
customization options beyond what was demonstrated here.

Automation

Windows Build Server

A service for building custom WIM images for deployments.
The WIM images may contain additional drivers or post setup deployment scripts.

WIM images can be server or desktop OS and are useful in virtual and physical environment
deployments.

Build

To build the server, start with a fresh install of Windows Server. This example will be based on
Windows Server 2016. The example should work on Windows Server 2019 with little to no
modification.

Only a few modifications were changed to the installation.

Server name

Network Settings

Driver installation

Disable IE lock down settings. (Needed to download drivers)

Create new local user in the administrators group. (Security will be configured later)
Remote Desktop enabled for easy of use.

Ansible prep powershell script run. Download Here.

Download the Windows Builder role or Private Data System playbook to deploy the build server.
Update the inventory file.

Run the deploy-winbuild playbook.

Configure

Updates.

The Windows update portion of the build can be very time consuming. To speed up the build time
and the WIM updating process, the updates will be downloaded ahead of time. This is not
necessary to run manually since the buld scripts will run the updates tools too.

Sign in to the Windows Build Server and go to the <wsus-offline-updater> folder.

https://git.clusterapps.com/snippets/4/raw
https://git.clusterapps.com/ansible/ansible-role-win_builder

I 4 = | wsusoffine

Home Share WView
= ~ 4 » Thas PC » Build Files (Z:) » wsusoffline
Mame N
Quick sccess
B Deskto - ¥a
d chient
4 Downloads - e
[% Docurnents - doc
&= Pictures -+ exclude
3 This PC o
log
b Metwork sh
static
it
:l UpdateGenerator.aud
A UpdateGenerator
=] UpdsteGenerater
13 items

Date modified

47772019 T:19 AM
2009 746 AM
4772019 T:19 AM
T/2019 T:45 AM
2019 T:45 AM
2019 7:19 AM
2019 7:19 AM
47772019 T8 AM
ATr2019 719 AM
frr2e T8 AM
31372019 &:54 PM
3M13/2019 902 PM
AFTr2009 T:36 AM

Type

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
A3 File
Application
Configuration sett...

v O Search wiusoffline

Size

136 KB
93KB
2KB

Run the UpdateGenerator.exe

Select the version(s) of Windows to download updates for.

https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/8hwEWOwnhtuOodYB-UpdateGenerator-Explorer.png

5§’ WS5US Offline Update 11.6.1 - Generator

Download Microsoft updates for...
Windows (QOffice
Windows Server 2008 (w60 / wE0-x64)
|:| %86 Global (multiingual updates)
Windows 7 / Server 2008 B2 (w61 / wb1-x64)
|:| %858 Global (multiingual updates)
Windows Server 2012 (wb62-x64)

Windows 8.1 / Server 2012 R2 (w3 / wi3-x54)
|:| x86 Global (multiingual updates)

Windows 10/ Server 2016 (w100 / w100-x54)
|:| %86 Global (multiingual updates)

Options

Verify downloaded updates

Include C++ Runtime Libraries and NET Frameworks
[iInclude Microsoft Security Essentials

Create IS0 image(s)...

|:| per selected product and language

USE medium

[] Copy updates for selected products into directory:

nry prepare U7 Usd

et |:| Dnr.y create collection script .

Repository info
Last download: 04/07/2019, catalog date: AM

Dxﬁd Global (multilingual updates)

Dxﬁd Global (multilingual updates)

Dxﬁd Global (multilingual updates)

Dxﬁd Global (multiingual updates)

xﬁd Global (multiingual updates)

[]include Service Packs
|:| Use 'security only updates’ instead of "guality rollups”

|:| Include Windows Defender definitions

|:| per selected language, "xB86-cross-product’ (desktop only)

WSUS... Donate... Exit

This example will only download updates for Windows 10 and Windows Server 2016.

After a few moments the UpdateGenerator will begin to run.

B Wget http://download wsuseffline.net/mkisofs.exe

https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/y1Fnvw2s1WIkdDr9-UpdateGenerator.png
https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/xOPso0HtZHbedmiV-UpdateGenoerator-running.png

This process may take a very long time depending on the number of versions selected and if Office
was included.

When the process is complete, a prompt will appear to review the logs.

Info
Download / image creation / copying successful,
Would you like to check the log file for possible warnings now?
Yes Mo
Drivers

Sign in to the Windows Build Server and go to the source\Builder\Drivers folder.

| E] = | Drivers

Home Share View

“— w A » This PC » Build Files (Z:) » source » Builder » Drivers »
-~
MName Date modified Type Size

Quick access

10.0 4/9/2019 1:05 PM File folder
[Deskiop -

boot 4/9/2019 1:05 PM File folder
; Downloads -
Documents -
[&] Pictures o

== Build Files (Z:)

O This PC
I Desktop
Documents
* Downloads

There are folders for each Windows version that can be deployed. The boot directory is for WinPE
and 10.0 is for Windows Server 2016. Note that Windows Server 2019 will also build in the 10.0
folder. (For now)

Copy the drivers that are needed to the folders. The folders are recursively scanned, so add as
many as you need. To keep the WiInPE size to a minimum, only place drivers required for install in
the boot folder. At a minimum, this would be the storage and networking drivers. For this example,
the hypervisor is KVM. The virtstor and netkvm drivers were added to the folders. For the actual OS
image place all of the needed inf in the folder. Multiple drivers for multiple hardware platforms can
be copied to the folders to allow for a simple image to be used on many platforms.

If drivers require a setup file to be run, we'll add those to the post install playbooks. More on that
later.

https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/TncK6oEfMtoE7kEB-UpdateGenerator-Complete.png
https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/BPBbsPzmxnlZdhvW-Drivers-folder.png

Images

There are two base WIM files that will be needed to build the custom ones. You will need a copy of
the Windows Server ISO along with the Windows Assessment and Deployment Kit, and the
Windows Assessment and Deployment Kit Windows Preinstallation Environment Add-on. Both
Windows ADK components are installed when using the deploy-winbuild playbook.

boot.wim: Copy the winpe.wim file from C:\Program Files (x86)\Windows Kits\10\Assessment and
Deployment Kit\Windows Preinstallation Environment\amd64\en-us to \source\Builder\SourceWims\boot and
rename the files boot.wim.

install.wim: You will need a licensed copy of the Windows Server installation media for this step.
If you configured the playbook to download the ISO file it will be located in the \source\ISO directory
on the build system. Copy the DvD:\sources\install.wim file to \source\Builder\SourceWims\boot . Do not
change the file name.

Building Images

Once all of the base requirements are in place, it is time to run the build scripts. These script are

modified versions of the Foreman build scripts. Open the \source\Builder folder and run the Build-
All.psl in an elevated PowerShell console.

| & [= | Builder - m] X
ﬂ Home Share View v a
— v 4 » This PC » Build Files (Z:) » source » Builder » v | Search Builder o

A
Mame Date modified Type Size
o Quick access
bootinject 4/9/201912:3BPM File folder
N Desktop +)
Drivers 4/9/2019 12:38 PM File folder
¥ Oownlosds # SourceWims 4/9/201912:38PM File folder
(& Documents working 4/9/2019 1:04PM File folder
&= Pictures * & Build-2016Wim 47720191200 PM Windows PowerShell Script 1KB
am Build Files (Z:) & Build-All 4/7/2019 3:26 PM Windows PowerShell Script 1 KB
& Build-Boot 4/9/2019 1:10 PM Windows PowerShell Script 1KB

I This PC i i = .

- & Build-BootWim 4/7/20191200PM Windows PowerShell Script 1KB
I Desktop & Build-WS2016 4/9/2019 1:10PM Windows PowerShell Script 1KB
Iﬂ Documents & Functions 4/9/201911:39 AM Windows PowerShell Script 6 KB
; Downloads & Globals 4/9/201912:42PM Windows PowerShell Script 2KB
B Music [LICENSE.md 4/7/201912:00PM MD File 12KB
B Pictures [readme.md 4/7/20191200PM MD File 4KB
B videos & Wim 4/8/2019 1:47 PM Windows PowerShell Script 4KB

s Local Disk (C:)

B fAans e

https://github.com/LiamLeane/ForemanWimScripts
https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/VWmKbn30IESn35Cp-Winbuild-scripts.png

E¥ Administrator: Windows PowerShell - O x

Mount -Windows Image
Running
[cooooo00000000000000000

After the build scrips have created the new WIM files, they will be located in the \Deploy directory
on the build server. Review the date modified and the file size to determine that the file has
recently been updated. Unless the build scripts fail, most error messages can be ignored.

¥ | 10.0 . O X
Home Share View 9
— v A » ThisPC > Build Files (Z:) » Deploy » 10.0 v O Search 10.0 2
Name) Date modified Type Size

o Quick access

B Deskt || install.wim 4/29/2019 %38 AM WIM File 5,089,841 KH
esktop o

‘ Downloads o

% Documents 4
&= Pictures o
== Build Files (Z:)

The deploy-winbuild playbook automatically shared this folder to the network. These files are now
ready for deployment and can be used with your favorite deployment tools.

https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/bxfJ03XIT93tCNFQ-WinBuild-BuildAll.png
https://books.clusterapps.com/uploads/images/gallery/2019-04-Apr/7P8jkp4Y3jupRk1n-WinBuild-Deploy.png

Automation

Windows Managed Node
Setup

Setup a Windows host - local Ul

Setting up a Windows Server to be managed by Ansible involves a few key steps. Ansible
communicates with Windows servers over WinRM (Windows Remote Management), which is a
Windows-native remote management protocol based on WS-Management (Web Services-
Management). The setup process generally includes configuring WinRM on the Windows server and
preparing the Ansible control machine to manage Windows hosts.

Here are the steps to prepare a Windows Server for management with Ansible:

1. Configure WinRM on the Windows
Server

The easiest way to configure WinRM for Ansible is to use the ConfigureRemotingForAnsible.psl script,
which is provided in the Ansible documentation. This script sets up WinRM to use basic
authentication and configures it to allow connections from Ansible.

1. Download the Script: On the Windows Server, open PowerShell as an Administrator and
run the following command to download the script:

Invoke-WebRequest -Uri "https://raw.githubusercontent.com/ansible/ansible-
documentation/devel/examples/scripts/ConfigureRemotingForAnsible.ps1" -OutFile
"ConfigureRemotingForAnsible.ps1"

2. Run the Script: Execute the script you just downloaded:
\ConfigureRemotingForAnsible.ps1

This script will configure WinRM to use HTTP (port 5985), enable basic authentication, and
create a firewall rule to allow WinRM traffic.

3. Note: For a production environment, it's recommended to use HTTPS (port 5986) with
certificate-based authentication for increased security. This setup is more complex and
requires installing a valid certificate on the Windows Server and additional WinRM
configuration.

2. Prepare the Ansible Control Machine

On the Ansible control machine, which is typically a Linux system, you need to install pywinrm to
enable WinRM support. This can be done using pip:

pip install pywinrm

3. Configure Ansible Inventory

Edit your Ansible inventory file to include your Windows hosts. You can define them under a
specific group [windows] and specify the necessary variables:

[windows]

windows-server.example.com

[windows:vars]
ansible_user=Administrator
ansible_password=YourPassword
ansible_connection=winrm

ansible_winrm_server_cert validation=ignore

Security Note: Storing passwords in plaintext in the inventory file is not secure. Consider using
Ansible Vault to encrypt sensitive data.

4. Test the Configuration

Now, test your setup by running a simple Ansible command to ping the Windows server:

ansible windows -m win_ping

If everything is configured correctly, the win_ping module should return a success message.

Additional Notes

e Ensure network connectivity between the Ansible control machine and the Windows
Server, specifically that the required WinRM port (5985 for HTTP, 5986 for HTTPS) is open.

e The setup process might vary slightly depending on the specific version of Windows
Server you are using.

e For production environments, it's highly recommended to use Kerberos or NTLM with
WinRM over HTTPS for secure authentication and encryption.

By following these steps, you should have a Windows Server ready to be managed by Ansible.

Remote install / fleet deployments

To remotely set up a Windows Server to be managed by Ansible, you need to configure WinRM
(Windows Remote Management) on the target server. This process can be challenging since it
ideally requires remote execution of a configuration script on the Windows server. If you have
physical access or remote desktop (RDP) access to the server, it's usually easier to set up WinRM
directly. However, if you need to do this entirely remotely, here are some methods you can
consider:

1. Using PowerShell Remoting

If PowerShell Remoting is already enabled on the target server, you can use it to configure WinRM
for Ansible.

1. Connect to the Windows Server via PowerShell Remoting:

$credential = Get-Credential

Enter-PSSession -ComputerName <Target-Server-IP-or-Hostname> -Credential $credential
2. Run the Ansible WinRM Configuration Script: Download and execute the
ConfigureRemotingForAnsible.psl script within the remote session.

Invoke-WebRequest -Uri "https://raw.githubusercontent.com/ansible/ansible-
documentation/devel/examples/scripts/ConfigureRemotingForAnsible.ps1" -OutFile
"ConfigureRemotingForAnsible.ps1"

A\ConfigureRemotingForAnsible.psl

3. Exit the Remote Session:

Exit-PSSession

2. Using Group Policy (For Domain-joined
Servers)

If the server is part of an Active Directory domain, you can use Group Policy to configure WinRM on
multiple servers at once.

1. Create a new GPO in your Group Policy Management Console.

2. Edit the GPO to include the WinRM service configuration. Typically, you need to set up
the service to start automatically and configure the listener for HTTP and/or HTTPS.

3. Link the GPO to an OU that contains your servers.

3. Using a Configuration Management Tool

If you have a configuration management tool like SCCM (System Center Configuration Manager),
you can use it to push out a script or configuration to enable and configure WinRM on Windows
servers.

4. Using a Remote Execution Tool

If you have access to a remote execution tool like PSExec (part of Sysinternals), you can use it to
run commands or scripts on the remote Windows server.

For example:

psexec \\target-server -u username -p password -h powershell.exe -ExecutionPolicy Bypass -File

ConfigureRemotingForAnsible.psl

Security Considerations

e When setting up WinRM, especially over HTTP, be aware of security implications. HTTP
traffic is not encrypted, which can expose sensitive data. For production environments,
HTTPS with certificate-based authentication is recommended.

e Ensure that the WinRM service is properly secured and accessible only from trusted
networks or hosts.

Testing the Setup

After setting up WinRM, test the connection from your Ansible control machine:

ansible windows -i inventory_file -m win_ping

Replace inventory file with the path to your Ansible inventory file where your Windows host is
defined.

Conclusion

The method you choose depends on your current infrastructure, the tools you have available, and
your access level to the Windows Server. For security and simplicity, direct access (like RDP) to set
up WinRM is generally preferred, but in environments where this is not feasible, remote methods
are necessary.

Citrix Virtual Apps and
Desktops

Citrix Virtual Apps and Desktops

Export and Import Policies

Exporting the Policy

Complete the following procedure to export the policy:

1. From the Desktop Delivery Controller as an Administrator role account.

2. Open PowerShell : Add-PSSnapin Citrix*
3. Export-BrokerDesktopPolicy | Out-File -FilePath "C:\Temp\CitrixExportPolicy.txt"

The preceding commands exports the policy to a binary file.

Importing the Policy

Complete the following procedure to import the policy:

1. From the Desktop Delivery Controller as an Administrator role account.

2. Open PowerShell : Add-PSSnapin Citrix*
3. Import-BrokerDesktopPolicy (Get-Content "C:\Temp\CitrixExportPolicy.txt")

Citrix Virtual Apps and Desktops

Intro to Citrix

Lifecycle

Current Releases will reach End of Maintenance 6 months after the release date. Current Release.
Current Releases will reach End of Life 18 months after the release date.

A Long Term Service Release will reach End of Life 5 years after the release date. A Long Term
Service Release will reach End of Extended Support 10 years after the release date.

Citrix Virtual Apps and Desktops

Upgrading Client VDA

To upgrade VDAs installed on machines running Windows 8.x or Window 7 to Windows 10, Citrix
recommends reimaging Windows 7 and Windows 8.x machines to Windows 10 and then installing
the supported VDA for Windows 10. If reimaging is not an option, uninstall the VDA before
upgrading the operating system; otherwise, the VDA will be in an unsupported state.

Citrix Virtual Apps and Desktops

Upgrading Components

Upgrade procedure

Insert the installation media or mount the ISO drive for the new release. Double-click AutoSelect.

To use the command-line interface, see Install using the command line.

1. Install more than one core component is installed on the same server (for example, the
Controller, Studio, and License Server) and several of those components have new
versions available, they will all be upgraded when you run the installer on that server.

If any core components are installed on machines other than the Controller, run the installer on
each of those machines. The recommended order is: License Server, StoreFront, and then Director.

2. Run the product installer on machines containing VDAs. (See Step 9 for master images
and Machine Creation Services.)

3. If Studio is installed on a different machine than one you've already upgraded, run the
installer on the machine where Studio is installed.

4. From the newly upgraded Studio, upgrade the Site database.

5. From the newly upgraded Studio, select Citrix Studio site-name in the navigation pane.
Select the Common Tasks Select Upgrade remaining Delivery Controllers.

6. After completing the upgrade close and then reopen Studio. Studio might prompt for an
additional Site upgrade.

7. In the Site Configuration section of the Common Tasks page, select Perform registration.
Registering the Controllers makes them available to the Site.

8. After upgrading components, the database, and the Site, test the newly-upgraded Site.
From Studio, select Citrix Studio site-name in the navigation pane. Select the Common
Tasks tab and then select Test Site. These tests were run automatically after you
upgraded the database, but you can run them again at any time.

9. After you upgrade and test the deployment, update the VDA used in the master images (if

you haven’t done that already). Update master images that use those VDAs. See Update

or create a new master image. Then update machine catalogs that use those master
images, and upgrade Delivery Groups that use those catalogs.

https://docs.citrix.com/en-us/citrix-virtual-apps-desktops/install-configure/install-command.html
https://docs.citrix.com/en-us/citrix-virtual-apps-desktops/install-configure/machine-catalogs-create.html#prepare-a-master-image-on-the-hypervisor-or-cloud-service
https://docs.citrix.com/en-us/citrix-virtual-apps-desktops/install-configure/machine-catalogs-create.html#prepare-a-master-image-on-the-hypervisor-or-cloud-service

Citrix Virtual Apps and Desktops

Upgrading the Site and
Database

Upgrade Steps

After upgrading the core components and VDAs, use the newly upgraded Studio to initiate an
automatic or manual database and Site upgrade.

Remember: Check the Preparation section above for permission requirements.

e For an automatic database upgrade, the Studio user’'s permissions must include the ability
to update the SQL Server database schema.

e For a manual upgrade, the Studio user runs some of the generated scripts from Studio.
The database administrator runs other scripts, using either the SQLCMD utility or the SQL
Server Management Studio in SQLCMD mode. Otherwise, inaccurate errors can result.

Citrix strongly recommends that you back up the database before upgrading. See CTX135207.
During a database upgrade, product services are disabled. During that time, Controllers cannot
broker new connections for the site, so plan carefully.

After the database upgrade completes and product services are enabled, Studio tests the
environment and configuration, and then generates an HTML report. If problems are identified, you
can restore the database backup. After resolving issues, you can upgrade the database again.

Upgrade the database and site automatically:

Launch the newly upgraded Studio. After you choose to start the site upgrade automatically and
confirm that you are ready, the database and site upgrade proceeds.

https://docs.citrix.com/en-us/citrix-virtual-apps-desktops/install-configure/install-prepare.html
https://support.citrix.com/article/CTX135207

ldentity and Access
Management

Identity and Access Management

Foreman Smart Proxy -
FreelPA DNS

The SmartProxy DNS module can update any DNS server that complies with the ISC Dynamic DNS
Update standard. Updates can also be made using GSS-TSIG, additional providers are available for
managing libvirt’'s embedded DNS server, and Microsoft Active Directory using dnscmd, for static
DNS records.

This guide will focus on FreelPA and kerberos for SmartProxy DNS management.

FreelPA configuration

A service principal is required for the Smart Proxy
foremanproxy/proxy.example.com@EXAMPLE.COM .

Create a new service principal for the SmartProxy. On any IPA server or controller node:
ipa service-add foremanproxy/proxy.example.com@EXAMPLE.COM .

On the SmartProxy host, get the keytab file

ipa-getkeytab -p foremanproxy/proxy.example.com@EXAMPLE.COM -s ipa-server.example.com -k /etc/foreman-
proxy/dns.keytab

Set permissions and owner for the keytab.
chmod 0600 /etc/foreman-proxy/dns.keytab && chown foreman-proxy /etc/foreman-proxy/dns.keytab

In the FreelPA web Ul, go to the DNS zone, then to the Settings tab, verify that “Dynamic update”
is set to “True”, and add the following to the BIND update policy a new grant:

grant foremanproxy\047proxy.example.com@EXAMPLE.COM wildcard * ANY;

ACLs should be updated for both forward and reverse zones.
Note the \047 is written verbatim, and don’t forget the semicolon.

Proxy configuration

Update the proxy DNS configuration file (/etc/foreman-proxy/settings.d/dns.yml) with the following
setting:

:use_provider: dns_nsupdate_gss

And the DNS GSS configuration file (/etc/foreman-proxy/settings.d/dns_nsupdate_gss.yml) with:

:dns_server: 127.0.0.1 or ip of DNS
:dns_tsig_keytab: /etc/foreman-proxy/dns.keytab
:dns_tsig_principal: foremanproxy/proxy.example.com@EXAMPLE.COM

Ensure the dns key setting is not specified, or is commented out.
Restart the smart proxy service.

systemctl restart foreman-proxy

check the log file for any errors or warnings.

tail -fn100 /var/log/foreman-proxy/proxy.log

Update Foreman

After adding a Smart Proxy plugin, you must instruct Foreman to rescan the configuration.

In Foreman, Go to the Smart Proxies Use the Actions drop-down menu and select “Refresh
Features” .

Add the Smart Proxy as a DNS proxy on the subnets and domains as needed.

Identity and Access Management

IPA - Basic Commands

A basic list of command to manage FreelPA services.

DNS

Add new a record and reverse record.

An A record is used to map an FQDN to an IP address. The A record is created using the following:

ipa dnsrecord-add <forward-zone> <short-name> --a-rec <IP of A record>

The reverse, or pointer, record is used to map the IP to a hostname. The command to create a
pointer is:

ipa dnsrecord-add <reverse-zone> <num> --ptr-rec <host-FQDN>.
Note the trailing dot. This is very important.

This is an example of adding serverl.i.example.com with the IP of 192.168.4.11 to the FreelPA
DNS.

ipa dnsrecord-add i.example.com serverl --a-rec 192.168.4.11

ipa dnsrecord-add 4.168.192.in-addr.arpa 11 --ptr-rec serverl.i.example.com.

Hosts

Remove a failed or dead host.

ipa host-del serverl --updatedns

Including the --updatedns option will also remove all of the linked DNS entries for this host.

Services

The service must include the service / FQDN of the host.

ipa service-add nfs/serverl.i.example.com

Users

Add a new user labl

ipa user-add labl

Change the new user's password

ipa passwd labl

Identity and Access Management

IPA - Fast and Dirty

This guide explains how to deploy FreelPA the quickest way possible.
This is not for production.
You will need a fresh install of CentOS 7. The latest edition will be fine.

As root, update the server and install the requirements.

yum update -y

yum install -y ipa-server bind-dyndb-Idap ipa-server-dns

Open the firewall ports and reload the firewall.

firewall-cmd --permanent --add-service={http,https,ftp,Idap,ldaps,kerberos,kpasswd,dns,ntp}

firewall-cmd --reload

Run the IPA Server install.

ipa-server-install --setup-dns --allow-zone-overlap

kinit admin
Follow the install prompts. Answer each item. If you don't know, choose the default option.

kinit admin
<enter password entered durring ipa setup>

klist # to view the ticket.

Check the IPA Server status.

ipactl status

Example:

ipactl status
Directory Service: RUNNING
krb5kdc Service: RUNNING

kadmin Service: RUNNING

named Service: RUNNING
ipa_memcached Service: RUNNING
httpd Service: RUNNING
pki-tomcatd Service: RUNNING
ipa-otpd Service: RUNNING

ipa: INFO: The ipactl command was successful

If there were no errors, then you have a running IPA Server. Log in to the IPA server to begin

management tasks. To use the web interface go to https://<fqgdn of the IPA server.

To setup a simple method for transferring the CA certificate is ftp. In this example vsftpd is used.
The firewall ports were already opened during the IPA setup.

yum install -y vsftpd
systemctl enable --now vsftpd # or systemctl enable vsftpd; systemctl start vsftpd

cp /etc/ipa/ca.crt /var/ftp/pub

Now non-IPA clients will be able to securely access the LDAP. Add this certificate to web browsers
or other application to trust web services that use the IPA sever as a CA.

https://<fqdn

Oracle Things

APEX on Docker

docker network create ora

docker run --name oracledb \
--network=ora \

-p 1521:1521\

-p 5500:5500 \

-v ~/oradata:/opt/oracle/oradata \

-v ~/apex/images/apex:/tmp/apex_install \

-e TZ=America/New_York \oracle/database:18.3.0-se2

docker exec oracledb ./setPassword.sh Oradoc_dbl

Install and configure APEXdocker exec -it oracledb bash -c "source /home/oracle/.bashrc; bash"
cd /tmp/apex-installsqglplus sys/Oradoc_dbl@localhost/orclpdbl as sysdba

-- Install APEX@apexins.sql SYSAUX SYSAUX TEMP /i/

-- APEX REST configuration@apex_rest_config_core.sql oracle oracle

alter user apex_public_user identified by oracle account unlock;

-- From the blog: "Create a network ACE for APEX (this is used when consuming Web services or
sending outbound mail):"

declare

|_acl_path varchar2(4000);
|_apex_schema varchar2(100);
begin

for cl in (select schema

from sys.dba_registry

where comp_id = 'APEX') loop

|_apex_schema := cl.schema;

end loop;

sys.dbms_network_acl_admin.append_host _ace(

host => '*',

ace => xs$ace_type(privilege_list => xs$name_list(‘connect’),
principal_ name => | apex_schema,

principal_type => xs_acl.ptype_db));

commit;

end;

/

begin

apex_util.set_security_group_id(10);
apex_util.create_user(

p_user_name => 'ADMIN’,

p_email_address => 'systems@example.com’,
p_web_password => 'oracle’,

p_developer privs => 'ADMIN');
apex_util.set_security_group_id(null);
commit;

end;

/

-- Exit SQLexit

###4# ORDS

-- Assuming that you have a folder called ~/docker/ordscd ~/docker/ords

git clone https://github.com/martindsouza/docker-ords.git

cd docker-ords
-- Extract the ords.war file from the ords.zip downloadunzip ~/Downloads/ords.*.zip ords.war
cd ~/ords/docker-ords

ORDS_VERSION=18.3.0
docker build -t ords:$ORDS_VERSION .

docker run --name ords\

--network=ora \

-e TZ=America/New_York \

-e DB_HOSTNAME=oracledb \

-e DATABASE_SERVICENAME="orclpdb1" \

-e DB_PORT=1521\

-e APEX_PUBLIC_USER_PASS=oracle \

-e APEX_LISTENER_PASS=oracle \

-e APEX_REST PASS=oracle \

-e ORDS_PASS=oracle \

-e SYS_PASS=O0Oradoc_db1l\

--volume ~/ords/ords-18.3.0/config:/opt/ords \
--volume ~/apex/images/apex/images:/ords/apex-images \
-p 8080:8080 \

ords:18.3.0

docker run -t -i \

--name ords \

--network=ora \

-e DATABASE_HOSTNAME="oracledb" \

-e DATABASE_PORT="1521"\

-e DATABASE_SERVICENAME="ORCLPDB1" \
-e DATABASE_PUBLIC_USER_PASS=oracle \
-e APEX_LISTENER_PASS=oracle \

-e APEX_REST_PASS=oracle \

-e ORDS_PASS=oracle \

--volume ~/apex/images:/usr/local/tomcat/webapps/i \
-p 8080:8080 \

lucassampsouza/ords_apex:3.0.9

Oracle Things

OCI CLI setup
Setup OCI

You'll need a terminal and a browser. Log in to OCI and go to your profile. You'll need the user OCID
and the tenant OCID. Note the region you are in.

Install oci

e Oracle Linux 8

sudo dnf -y install oraclelinux-developer-release-el8

sudo dnf install python36-oci-cli

e Other Linux

bash -c "$(curl -L https://raw.githubusercontent.com/oracle/oci-cli/master/scripts/install/install.sh)"

e MacOS

brew upgrade && brew update && brew install oci-cli

e Windows

lol. No. Get a Linux box or use WSL.

Configure

At the command line:

oci setup config

In a browser open the OCI console copy the user OCID.
Open the Profile menu (User menu icon) and click User Settings.

Copy the user OCID and return to the command line. Paste the user OCID at the User OCID prompt
and hit return.

Return to the OCI console and navigate to Administration > Tenancy Details. In the Tenancy
Information tab, click Copy to copy the OCID.

Return to the command line and paste the value at the OICD prompt and hit return.
Enter the associated region, hit enter.

Generate or enter the path to the private PEM file. For example, ~/.oci/oci_api_key.pem If required,
enter the passphrase used with the key. Enter y or no to the prompt asking about whether to store
the passphrase.

The configuration process is complete.

CLI Concepts

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/cliconcepts.htm

Oracle Things

Oracle Database 19c

Download the following software:

e Oracle Linux 7 (x86_64)
e Oracle Database (x86_64) 19c Enterprise Edition
e Oracle APEX

OS setup

Install Oracle Linux 7. Select Server with a GUI. or Minimal.

As the root user, configure the OS and create the directory structure.

yum install -y oracle-database-preinstall-19c wget
mkdir -p /uO1/app/oracle/product/19.0.0/dbhome_1
mkdir -p /u02/oradata

chown -R oracle:oinstall /u01 /u02

chmod -R 775 /u01 /u02

Database installation.

As the oracle user:

Make a scripts folder

mkdir /home/oracle/scripts

Create an environment script. This will hold all of the settings.

cat > /home/oracle/scripts/setEnv.sh <<EOF

Oracle Settings

export TMP=/tmp

export TMPDIR=\$TMP

export ORACLE_HOSTNAME=o0ral9c.core.example.com
export ORACLE_UNQNAME=cdbl

export ORACLE_BASE=/u01l/app/oracle

EE

https://www.oracle.com/linux/
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
https://www.oracle.com/tools/downloads/apex-downloads.html

export ORACLE_HOME=\$ORACLE_BASE/product/19.0.0/dbhome_1
export ORA_INVENTORY=/u01/app/oralnventory

export ORACLE_SID=cdbl

export PDB_NAME=pdb1l

export DATA_DIR=/u02/oradata

export PATH=/usr/sbin:/usr/local/bin:\$PATH

export PATH=\$ORACLE_HOME/bin:\$PATH

export LD_LIBRARY_PATH=\$ORACLE_HOME/lib:/lib:/usr/lib

export CLASSPATH=\$ORACLE_HOME/jlib:\$ORACLE_HOME/rdbms/jlib
EOF

Add the contents of setEnv.sh to Oracle's .bash_profile.

echo ". /Thome/oracle/scripts/setEnv.sh" >> /home/oracle/.bash_profile

Create a start script.

cat > /home/oracle/scripts/start_all.sh <<EOF
#!/bin/bash

. /home/oracle/scripts/setEnv.sh

export ORAENV_ASK=NO
. oraenv

export ORAENV_ASK=YES

dbstart \$ORACLE_HOME
EOF

Create a stop script.

cat > /home/oracle/scripts/stop_all.sh <<EOF
#!1/bin/bash

. /home/oracle/scripts/setEnv.sh

export ORAENV_ASK=NO
. oraenv

export ORAENV_ASK=YES

dbshut \$ORACLE_HOME
EOF

Set the owner and folder and execute on the scripts.

chown -R oracle:oinstall /home/oracle/scripts

chmod u+x /home/oracle/scripts/*.sh

Load the environment.

source /home/oracle/.bash_profile

Unzip the installer.

cd $ORACLE_HOME
unzip -oq /tmp/LINUX.X64_193000_db_home.zip

Run the installer.

.JJruninstaller -ignorePrereq -waitforcompletion -silent
-responseFile ${ORACLE_HOME}/install/response/db_install.rsp
oracle.install.option=INSTALL DB_SWONLY
ORACLE_HOSTNAME=${ORACLE_HOSTNAME}
UNIX_GROUP_NAME=oinstall \
INVENTORY_LOCATION=${ORA_INVENTORY}

SELECTED LANGUAGES=en,en_US
ORACLE_HOME=${ORACLE_HOME}
ORACLE_BASE=${ORACLE_BASE}
oracle.install.db.InstallEdition=EE \
oracle.install.db.OSDBA_GROUP=dba
oracle.install.db.OSBACKUPDBA_GROUP=dba
oracle.install.db.OSDGDBA_GROUP=dba
oracle.install.db.OSKMDBA_GROUP=dba
oracle.install.db.OSRACDBA_GROUP=dba
SECURITY_UPDATES_VIA_MYORACLESUPPORT=false
DECLINE_SECURITY_UPDATES=true

As a root user, execute the following:

/u0l/app/oralnventory/orainstRoot.sh

/u0l/app/oracle/product/19.0.0/dbhome_1/root.sh

As the oracle user:

Start the listener

Isnrctl start

Create the first database.

dbca -silent -createDatabase \
-templateName General_Purpose.dbc \
-gdbname ${ORACLE_SID} -sid ${ORACLE_SID} -responseFile NO_VALUE \
-characterSet AL32UTF8 \
-sysPassword Som3bTt3rpwd \
-systemPassword Som3bTt3rpwd \
-createAsContainerDatabase true \
-numberOfPDBs 1 \
-pdbName ${PDB_NAME} \
-pdbAdminPassword Som3bTt3rpwd \
-databaseType MULTIPURPOSE \
-automaticMemoryManagement false \
-totalMemory 2000 \
-storageType FS \
-datafileDestination "${DATA_DIR}" \
-redoLogFileSize 50 \
-emConfiguration NONE \

-ignorePreReqs

Edit the "/etc/oratab" file setting the restart flag for each instance to 'Y".
Example:

cdbl:/u0l/app/oracle/product/19.0.0/db_1:Y

Enable Oracle Managed Files and make the PDB start when the instance starts

sqlplus / as sysdba <<EOF

alter system set db_create_file_dest='/u02/oradata’;
alter pluggable database pdb1l save state;

exit;

EOF

APEX

As the oracle user:

Make the apex directory and unzip the apex files.

mkdir -p /home/oracle/apex
unzip /tmp/apex_20.*.zip -d /home/oracle
chown -R oracle:oinstall /home/oracle/apex

cd /home/oracle/apex

Create an ACL script. This will be needed later.

cat > apex_acl.sql << EOF
BEGIN
BEGIN
dbms_network_acl_admin.drop_acl(acl => 'all-network-PUBLIC.xml");
EXCEPTION
WHEN OTHERS THEN

NULL;
END;
dbms_network_acl_admin.create_acl(acl => "all-network-PUBLIC.xml",
description => 'Allow all network traffic',
principal => 'PUBLIC',
is_ grant => TRUE,
privilege => 'connect');
dbms_network_acl_admin.add_privilege(acl => "all-network-PUBLIC.xml",

principal => 'PUBLIC',
is_grant => TRUE,
privilege => 'resolve');
dbms_network_acl_admin.assign_acl(acl => ‘all-network-PUBLIC.xml",
host => "*');

END;

/

sho err

COMMIT;

/

EOF

Connect to the database

sqlplus /nolog

Change roles

CONN pdbl AS SYSDBA

alter session set container=PDB1;

Run the script to install a full development environment

@apexins.sql SYSAUX SYSAUX TEMP /i/

Create an instance administrator user and set their password

@apxchpwd.sql

Configure REST Data Services

@apex_rest_config.sql

Run the ACL setup script created earlier.

@apex_acl.sql

Unlock APEX users

ALTER USER APEX_PUBLIC_USER ACCOUNT UNLOCK;

ALTER USER APEX_PUBLIC_USER IDENTIFIED BY "Som3bTt3rpwd";

ALTER USER APEX_REST_PUBLIC_USER IDENTIFIED BY "Som3bTt3rpwd" ACCOUNT UNLOCK;
ALTER USER APEX_LISTENER IDENTIFIED BY "Som3bTt3rpwd" ACCOUNT UNLOCK;

Oracle Things

Oracle Database 21c

Download the following software:

e Oracle Linux 8 (x86_64)
e Oracle Database 21c Enterprise Edition (x86_64)

NOTICE

This is a very basic install. It should only be used as a guide.

OS setup

Install Oracle Linux 8. "Minimal" installation.

As the root user, configure the OS and create the required directory structure.

dnf install -y oracle-database-preinstall-21c wget
mkdir -p /u01/app/oracle/product/21.0.0/dbhome_1
mkdir -p /u02/oradata

chown -R oracle:oinstall /u01 /u02

chmod -R 775 /u01 /u02

Database installation

As the oracle user:

Create a scripts folder:

mkdir /home/oracle/scripts

Create an environment script. This will hold all the necessary settings.

cat > /home/oracle/scripts/setEnv.sh <<EOF

Oracle Settings

export TMP=/tmp

export TMPDIR=\$TMP

export ORACLE_HOSTNAME=ora21lc.example.com

https://www.oracle.com/linux/
https://www.oracle.com/database/technologies/oracle-database-software-downloads.html

export ORACLE_UNQNAME=cdbl

export ORACLE_BASE=/u01/app/oracle

export ORACLE_HOME=\$ORACLE_BASE/product/21.0.0/dbhome_1
export ORA_INVENTORY=/u01/app/oralnventory

export ORACLE_SID=cdbl

export PDB_NAME=pdb1l

export DATA_DIR=/u02/oradata

export PATH=/usr/sbin:/usr/local/bin:\$PATH

export PATH=\$ORACLE_HOME/bin:\$PATH

export LD_LIBRARY_PATH=\$ORACLE_HOME/lib:/lib:/usr/lib

export CLASSPATH=\$ORACLE_HOME/jlib:\$ORACLE_HOME/rdbms/jlib
EOF

Add the contents of setEnv.sh to Oracle's .bash_profile .

echo ". /home/oracle/scripts/setEnv.sh" >> /home/oracle/.bash_profile

Create a start script.

cat > /home/oracle/scripts/start_all.sh <<EOF
#!/bin/bash

. /home/oracle/scripts/setEnv.sh

export ORAENV_ASK=NO
. oraenv

export ORAENV_ASK=YES

dbstart \$ORACLE_HOME
EOF

Create a stop script.

cat > /home/oracle/scripts/stop_all.sh <<EOF
#!/bin/bash

. /home/oracle/scripts/setEnv.sh
export ORAENV_ASK=NO
. oraenv

export ORAENV_ASK=YES

dbshut \$ORACLE_HOME

EOF

Set the owner and permissions for the scripts.

chown -R oracle:oinstall /home/oracle/scripts

chmod u+x /home/oracle/scripts/*.sh

Load the environment.

source /home/oracle/.bash_profile

Unzip the database installer.

cd $ORACLE_HOME
unzip -oq /tmp/LINUX.X64 _210000_db_home.zip

Run the installer.

.JJruninstaller -ignorePrereq -waitforcompletion -silent
-responseFile ${ORACLE_HOME}/install/response/db_install.rsp
oracle.install.option=INSTALL DB_SWONLY
ORACLE_HOSTNAME=${ORACLE_HOSTNAME}
UNIX_GROUP_NAME=oinstall \
INVENTORY_LOCATION=${ORA_INVENTORY}

SELECTED LANGUAGES=en,en_US
ORACLE_HOME=${ORACLE_HOME}
ORACLE_BASE=${ORACLE_BASE}
oracle.install.db.InstallEdition=EE \
oracle.install.db.OSDBA_GROUP=dba
oracle.install.db.OSBACKUPDBA_GROUP=dba
oracle.install.db.OSDGDBA_GROUP=dba
oracle.install.db.OSKMDBA_GROUP=dba
oracle.install.db.OSRACDBA_GROUP=dba
SECURITY_UPDATES_VIA_MYORACLESUPPORT=false
DECLINE_SECURITY_UPDATES=true

As a root user, execute the following:

/u0l/app/oralnventory/orainstRoot.sh

/u0l/app/oracle/product/21.0.0/dbhome_1/root.sh

As the oracle user:

Start the listener.

Isnrctl start

Create the database.

dbca -silent -createDatabase \
-templateName General _Purpose.dbc \
-gdbname ${ORACLE_SID} -sid ${ORACLE_SID} -responseFile NO_VALUE \
-characterSet AL32UTF8 \
-sysPassword Som3bTt3rpwd \
-systemPassword Som3bTt3rpwd \
-createAsContainerDatabase true \
-numberOfPDBs 1 \
-pdbName ${PDB_NAME} \
-pdbAdminPassword Som3bTt3rpwd \
-databaseType MULTIPURPOSE \
-automaticMemoryManagement false \
-totalMemory 2000 \
-storageType FS \
-datafileDestination "${DATA_DIR}" \
-redoLogFileSize 50 \
-emConfiguration NONE \

-ignorePreReqs

Edit the /etc/oratab file setting the restart flag for each instance to 'Y".
Example:

cdbl:/u0l/app/oracle/product/21.0.0/db_1:Y

Enable Oracle Managed Files and make the PDB start when the instance starts.

sqlplus / as sysdba <<EOF

alter system set db_create_file_dest='/u02/oradata’;
alter pluggable database pdbl save state;

exit;

EOF

Oracle Things

Oracle Enterprise Manager
13.5 on OLS8

Oracle Enterprise Manager Cloud Control 13c on Oracle Linux 8

Step 1: Download Required Software

First, ensure you have downloaded the necessary software from Oracle’s official website:

e Oracle Linux 8 ISO from Oracle Linux Download
e Oracle Database 19c (or latest) from Oracle Database Downloads
e Oracle Enterprise Manager Cloud Control 13c Release 5 (or latest) from Enterprise

Manager Downloads

Step 2: Install Oracle Linux 8

1. Install Oracle Linux 8: Boot from the Oracle Linux 8 ISO and follow the installation
prompts. If a GUI is needed, make sure to select the "Workstation" or "Server with GUI"
base environment during installation.

2. Set Up Network and Hostname: Configure your network settings and hostname during
or after installation as required.

Step 3: Prepare the Operating System

1. Update the System: Ensure your system is up-to-date.

dnf update -y

2. Install Required Packages: The oracle-database-preinstall-19c package will automatically
install dependencies and configure system parameters.

dnf install -y oracle-database-preinstall-19c wget

https://www.oracle.com/linux/downloads/
https://www.oracle.com/database/technologies/oracle19c-linux-downloads.html
https://www.oracle.com/enterprise-manager/downloads/index.html
https://www.oracle.com/enterprise-manager/downloads/index.html

3. Additional Dependencies: If there are specific additional dependencies for Oracle
Database 19c or the Enterprise Manager, install them as needed.

Step 4: Configure System Settings and
Users

1. Directory Structure: Create directories for Oracle software and data files.

mkdir -p /u01/app/oracle/product/19.0.0/dbhome_1
mkdir -p /uOl/app/oracle/middleware

mkdir -p /uOl/app/oracle/agent

mkdir -p /u01l/tmp

mkdir -p /uO1l/oradata

chown -R oracle:oinstall /u01

chmod -R 775 /u01

2. Environment Variables: As the oracle user, configure environment variables.
e Create a script /home/oracle/scripts/setEnv.sh with the following content:

export TMP=/tmp
export TMPDIR=$TMP

export ORACLE_HOSTNAME=<your_hostname>

export ORACLE_UNQNAME=emcdb

export ORACLE_BASE=/u01/app/oracle

export ORACLE_HOME=$ORACLE_BASE/product/19.0.0/dbhome_1
export ORACLE_SID=emcdb

export PATH=/usr/sbin:/usr/local/bin:$PATH
export PATH=$ORACLE_HOME/bin:$PATH

export LD_LIBRARY_PATH=$ORACLE_HOME/lib:/lib:/usr/lib
export CLASSPATH=$ORACLE_HOME/jlib:$ORACLE_HOME/rdbms/jlib

export OMS_HOME=/u01/app/oracle/middleware
export AGENT_HOME=/u01/app/oracle/agent/agent_inst

export MW_HOME=${ORACLE_BASE}/middleware

export OMS_HOME=${MW_HOME}
export GC_INST=${ORACLE_BASE}/gc_inst
export AGENT_BASE=${ORACLE_BASE}/agent

e Add the script to the oracle user’'s .bash_profile .

echo ". /Thome/oracle/scripts/setEnv.sh" >> /home/oracle/.bash_profile

Step 5: Install Oracle Database

1. Prepare the Database Installation: Unzip the Oracle Database software and prepare a
response file for a silent installation.

mkdir /u01/software/
cd /u0l1/software
unzip <path_to_your _downloaded_db_software>.zip

cd database

2. Run the Database Installer: Execute the silent installation using parameters.

.Jruninstaller -ignorePrereq -waitforcompletion -silent \
-responseFile ${ORACLE_HOME}/install/response/db_install.rsp \
oracle.install.option=INSTALL DB_SWONLY \
ORACLE_HOSTNAME=${ORACLE_HOSTNAME} \
UNIX_GROUP_NAME=oinstall \
INVENTORY_LOCATION=${ORA_INVENTORY} \
SELECTED_LANGUAGES=en,en_US \
ORACLE_HOME=${ORACLE_HOME} \
ORACLE_BASE=${ORACLE_BASE} \
oracle.install.db.InstallEdition=EE \
oracle.install.db.OSDBA_GROUP=dba \
oracle.install.db.OSBACKUPDBA GROUP=dba \
oracle.install.db.OSDGDBA_GROUP=dba \
oracle.install.db.OSKMDBA GROUP=dba \
oracle.install.db.OSRACDBA_GROUP=dba \
SECURITY_UPDATES_VIA_MYORACLESUPPORT=false \
DECLINE_SECURITY_UPDATES=true

3. Configure the Listener and Database: Use the netca and dbca tools to configure the
network and create the database, respectively. These can be automated with response
files or command-line options for silent operations.

Start the listener:

Isnrctl start

Create the database:

dbca -silent -createDatabase \
-templateName General _Purpose.dbc \
-gdbname ${ORACLE_SID} -sid ${ORACLE_SID} -responseFile NO_VALUE \
-characterSet AL32UTF8 \
-sysPassword Som3bTt3rpwd \
-systemPassword Som3bTt3rpwd \
-createAsContainerDatabase true \
-numberOfPDBs 1 \
-pdbName ${PDB_NAME} \
-pdbAdminPassword Som3bTt3rpwd \
-databaseType MULTIPURPOSE \
-automaticMemoryManagement false \
-totalMemory 8000 \
-storageType FS \
-datafileDestination "$ {DATA_DIR}" \
-redoLogFileSize 50 \
-emConfiguration NONE \

-ignorePreReqs

4. Set the pluggable database to auto-start.

sqlplus / as sysdba <<EOF
alter system set db_create_file_dest='/u01/oradata’;

alter pluggable database emrep save state;

-- Recommended settings

alter system set "_allow_insert_with_update_check"=true scope=both;
alter system set session_cached_cursors=200 scope=spfile;

alter system set sga_target=800M scope=both;

alter system set pga_aggregate_target=450M scope=both;

EOF

Step 6: Install Oracle Enterprise Manager
Cloud Control

1. Prepare for Installation: Unzip
the Enterprise Manager software to /u0l/software/em and navigate to the directory.

2. Enterprise Manager Install Response File: Similar to the database, prepare a
response file for the Enterprise Manager installation.
Setup the environment:

export ORA_INVENTORY=/u01/app/oralnventory
export PDB_NAME=emrep

export SYS_PASSWORD=SysAdminpW1

export UNIX_GROUP_NAME=oinstall

export MW_HOME=${ORACLE_BASE}/middleware
export OMS_HOME=${MW_HOME}

export GC_INST=${ORACLE_BASE}/gc_inst
export AGENT_BASE=${ORACLE_BASE}/agent
export WLS_USERNAME=weblogic

export WLS_PASSWORD=SysAdminpW1

export SYSMAN_PASSWORD=${WLS_PASSWORD}
export AGENT_PASSWORD=${WLS_PASSWORD}
export SOFTWARE_LIBRARY=${ORACLE_BASE}/swlib
export DATABASE_HOSTNAME=localhost

export LISTENER_PORT=1521

export SOFTWARE_DIR=/u01/software/em

Create the responce file:

cat > /tmp/install.rsp <<EOF
RESPONSEFILE_VERSION=2.2.1.0.0
UNIX_GROUP_NAME=${UNIX_GROUP_NAME}
INVENTORY_LOCATION=${ORA_INVENTORY}
SECURITY_UPDATES_VIA_MYORACLESUPPORT=false
DECLINE_SECURITY_UPDATES=true

INSTALL UPDATES_SELECTION=skip
ORACLE_MIDDLEWARE_HOME_LOCATION=${MW_HOME}
ORACLE_HOSTNAME=${ORACLE_HOSTNAME}

AGENT BASE_DIR=${AGENT BASE}

WLS_ADMIN_SERVER_USERNAME=${WLS_USERNAME}
WLS_ADMIN_SERVER_PASSWORD=${WLS_PASSWORD}
WLS_ADMIN_SERVER_CONFIRM_PASSWORD=${WLS PASSWORD}
NODE_MANAGER_PASSWORD=${WLS_PASSWORD}
NODE_MANAGER_CONFIRM_PASSWORD=${WLS_PASSWORD}
ORACLE_INSTANCE_HOME_LOCATION=${GC_INST}
CONFIGURE_ORACLE_SOFTWARE_LIBRARY=true
SOFTWARE_LIBRARY_LOCATION=${SOFTWARE_LIBRARY}
DATABASE_HOSTNAME=${DATABASE_HOSTNAME}
LISTENER_PORT=${LISTENER_PORT}

SERVICENAME_OR SID=${PDB_NAME}
SYS_PASSWORD=${SYS_PASSWORD}
SYSMAN_PASSWORD=${SYSMAN_PASSWORD}
SYSMAN_CONFIRM_PASSWORD=${SYSMAN_PASSWORD}
DEPLOYMENT _SIZE=SMALL
AGENT_REGISTRATION_PASSWORD=${AGENT_PASSWORD}
AGENT_REGISTRATION_CONFIRM_PASSWORD=${AGENT_PASSWORD}
PLUGIN_SELECTION={}

b_upgrade=false

EM_INSTALL_TYPE=NOSEED

CONFIGURATION_TYPE=LATER
CONFIGURE_SHARED_LOCATION_BIP=false

EOF

3. Run the Installer: Execute the silent installation using the response file.

./em13500 linux64.bin silent -responseFile /tmp/install.rsp -J-Djava.io.tmpdir=/u01/tmp/

4. Post-Installation Steps:
At the end of a successful install, run the root script.
As root

sh ${MW_HOME}/allroot.sh

Return to Oracle user
Create the the configuration response file..

cat > /tmp/config.rsp <<EOF
RESPONSEFILE_VERSION=2.2.1.0.0
UNIX_GROUP_NAME=${UNIX_GROUP_NAME}
INVENTORY_LOCATION=${ORA_INVENTORY}

SECURITY_UPDATES_VIA_MYORACLESUPPORT=false
DECLINE_SECURITY_UPDATES=true

INSTALL_UPDATES SELECTION=skip
ORACLE_MIDDLEWARE_HOME_LOCATION=${MW_HOME}
ORACLE_HOSTNAME=${ORACLE_HOSTNAME}

AGENT BASE_DIR=${AGENT BASE}
WLS_ADMIN_SERVER_USERNAME=${WLS_USERNAME}
WLS_ADMIN_SERVER_PASSWORD=${WLS_PASSWORD}
WLS_ADMIN_SERVER_CONFIRM_PASSWORD=${WLS_PASSWORD}
NODE_MANAGER_PASSWORD=${WLS_PASSWORD}
NODE_MANAGER_CONFIRM_PASSWORD=${WLS_PASSWORD}
ORACLE_INSTANCE_HOME_LOCATION=${GC_INST}
CONFIGURE_ORACLE_SOFTWARE_LIBRARY=true
SOFTWARE_LIBRARY_LOCATION=${SOFTWARE_LIBRARY}
DATABASE_HOSTNAME=${DATABASE_HOSTNAME}
LISTENER_PORT=${LISTENER_PORT}

SERVICENAME_OR SID=${PDB_NAME}
SYS_PASSWORD=${SYS_PASSWORD}
SYSMAN_PASSWORD=${SYSMAN_PASSWORD}
SYSMAN_CONFIRM_PASSWORD=${SYSMAN_PASSWORD}
DEPLOYMENT _SIZE=SMALL
AGENT_REGISTRATION_PASSWORD=${AGENT_PASSWORD}
AGENT_REGISTRATION_CONFIRM_PASSWORD=${AGENT_PASSWORD}
PLUGIN_SELECTION={}

b_upgrade=false

EM_INSTALL_TYPE=NOSEED
CONFIGURATION_TYPE=ADVANCED
CONFIGURE_SHARED_LOCATION_BIP=false

EOF

Run the configuration. This will take a very long time.

${MW_HOME}/sysman/install/ConfigureGC.sh -silent -responseFile /tmp/config.rsp

At the end of the installation you'll be provided a list of URLs and post-installation steps. Follow any
post-installation steps such as deploying agents, as described in the Enterprise Manager
documentation.

Step 7: Finalize Installation

e Start Services: Ensure that the Oracle database and the Enterprise Manager services are

started.
e Verify Installation: Access the Enterprise Manager web interface to confirm that the

installation was successful.

Notes:

e Response Files: The details on what to include in response files for both the database
and Enterprise Manager can be found in the official Oracle documentation. These files
control installation options, such as directories, components to install, and initial setup
parameters.

e Oracle Documentation: For detailed options for the dbca, netca, and Enterprise
Manager silent installation parameters, refer to Oracle's official documentation.

This guide outlines a general approach to installing Oracle Database and Oracle Enterprise
Manager Cloud Control on Oracle Linux 8. Tailor the response files to your environment's specific
needs, referring to Oracle's documentation for the most accurate and detailed instructions.

Oracle Things

Oracle Enterprise Manager
Cloud Control 13c

Download the following software:

e Oracle Linux 7 (x86_64)
e Oracle Database (x86_64) 12c, 18c or 19c Enterprise Edition
e Enterprise Manager Cloud Control 13c Release 3 (13.3.0.0) (x86_64)

OS Installation

Install Oracle Linux 7. Choose "Server with a GUI" during installation.
Do the following as root.

1. Install required packages

yum install oracle-database-server-12cR2-preinstall -y
yum install wget -y

yum install make -y

yum install binutils -y

yum install gcc -y

yum install libaio -y

yum install glibc-common -y
yum install libstdc++ -y

yum install sysstat -y

yum install glibc -y

yum install glibc-devel.i686 -y
yum install glibc-devel -y

yum install libXtst -y

2. Create the directory structures

mkdir -p /uOl/app/oracle/product/12.2.0.1/db_1
mkdir -p /uOl/app/oracle/middleware

https://www.oracle.com/linux/
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/oem/grid-control/downloads/index.html

mkdir -p /uOl/app/oracle/agent
mkdir -p /u01l/tmp

mkdir -p /uO1l/oradata

chown -R oracle:oinstall /u01

chmod -R 775 /u01

Database Installation

Do the following as the oracle user

1. Create a scripts directory.

mkdir /home/oracle/scripts

2. Create /home/oracle/scripts/setEnv.sh with the following contents:

export TMP=/tmp
export TMPDIR=$TMP

export ORACLE_HOSTNAME=oraem.servers-farm.io

export ORACLE_UNQNAME=emcdb

export ORACLE_BASE=/u0l/app/oracle

export ORACLE_HOME=$ORACLE_BASE/product/12.2.0.1/db_1
export ORACLE_SID=emcdb

export PATH=/usr/sbin:/usr/local/bin:$PATH
export PATH=$ORACLE_HOME/bin:$PATH

export LD_LIBRARY_PATH=$ORACLE_HOME/Ilib:/lib:/usr/lib
export CLASSPATH=$ORACLE_HOME/jlib:$ORACLE_HOME/rdbms/jlib

export OMS_HOME=/u01/app/oracle/middleware
export AGENT_HOME=/u01l/app/oracle/agent/agent_inst

export MW_HOME=${ORACLE_BASE}/middleware
export OMS_ HOME=${MW_HOME}

export GC_INST=${ORACLE_BASE}/gc_inst
export AGENT_BASE=${ORACLE_BASE}/agent

3. Add the new script to your bash profile.

echo ". /Thome/oracle/scripts/setEnv.sh" >> /home/oracle/.bash_profile

4. Create a software folder and unzip the database.zip download in it.

mkdir /u01/software/
cd /uO1l/software
unzip ~/odbl2c.zip

cd database

5. Run the silent database install.

.JJruninstaller -ignorePrereq -waitforcompletion -silent \
-responseFile /u0l/software/database/response/db_install.rsp
oracle.install.option=INSTALL_DB_SWONLY \
ORACLE_HOSTNAME=${HOSTNAME} \
UNIX_GROUP_NAME=oinstall \
INVENTORY_LOCATION=/u01/app/oralnventory \
SELECTED_LANGUAGES=en,en_US \
ORACLE_HOME=${ORACLE_HOME} \
ORACLE_BASE=${ORACLE_BASE} \
oracle.install.db.InstallEdition=EE \
oracle.install.db.OSDBA_GROUP=dba \
oracle.install.db.OSBACKUPDBA GROUP=dba \
oracle.install.db.OSDGDBA_GROUP=dba \
oracle.install.db.OSKMDBA GROUP=dba \
oracle.install.db.OSRACDBA_GROUP=dba \
SECURITY_UPDATES_VIA MYORACLESUPPORT=false
DECLINE_SECURITY_UPDATES=true

6. Start the listener

Isnrctl start

7. Create the repository database

dbca -silent -createDatabase \
-templateName General _Purpose.dbc \
-gdbname emcdb -sid emcdb -responseFile NO_VALUE \
-characterSet AL32UTF8 \
-sysPassword SysAdminpW1 \
-systemPassword SysAdminpW1 \

-createAsContainerDatabase true \
-numberOfPDBs 1 \
-pdbName emrep \
-pdbAdminPassword SysAdminpW1 \
-databaseType MULTIPURPOSE \
-automaticMemoryManagement false \
-totalMemory 2000 \
-storageType FS \
-datafileDestination /u01l/oradata \
-redoLogFileSize 50 \
-emConfiguration NONE \

-ignorePreReqs

8. Set the pluggable database to auto-start.

sqlplus / as sysdba <<EOF
alter system set db_create_file_dest='/u01/oradata’;

alter pluggable database emrep save state;

-- Recommended settings

alter system set "_allow_insert_with_update_check"=true scope=both;
alter system set session_cached_cursors=200 scope=spfile;

alter system set sga_target=800M scope=both;

alter system set pga_aggregate_target=450M scope=both;

--For 12.1.0.2
alter system set optimizer_adaptive_features=false scope=both;
exit;

EOF

Enterprise Manager Installation

Do the following as the oracle user.

1. Follow the extraction guide downloaded with the EM files. Place all of the files in
/u0l/software/em.

2, Setup the environment

export ORA_INVENTORY=/u01/app/oralnventory
export PDB_NAME=emrep

export SYS_PASSWORD=SysAdminpW1

export UNIX_GROUP_NAME=oinstall

export MW_HOME=${ORACLE_BASE}/middleware
export OMS_HOME=${MW_HOME}

export GC_INST=${ORACLE_BASE}/gc_inst
export AGENT BASE=${ORACLE_BASE}/agent
export WLS_USERNAME=weblogic

export WLS_PASSWORD=SysAdminpW1

export SYSMAN_PASSWORD=${WLS_PASSWORD}
export AGENT_PASSWORD=${WLS_PASSWORD}
export SOFTWARE_LIBRARY=${ORACLE_BASE}/swlib
export DATABASE_HOSTNAME=localhost

export LISTENER_PORT=1521

export SOFTWARE_DIR=/u01/software/em

. Change to the software directory and create a response file.

cat > /tmp/install.rsp <<EOF
RESPONSEFILE_VERSION=2.2.1.0.0
UNIX_GROUP_NAME=${UNIX_GROUP_NAME}
INVENTORY_LOCATION=${ORA_INVENTORY}
SECURITY_UPDATES_VIA_MYORACLESUPPORT=false
DECLINE_SECURITY_UPDATES=true
INSTALL_UPDATES_SELECTION=skip
ORACLE_MIDDLEWARE_HOME_LOCATION=${MW_HOME}
ORACLE_HOSTNAME=${ORACLE_HOSTNAME}
AGENT_BASE_DIR=${AGENT_BASE}
WLS_ADMIN_SERVER_USERNAME=${WLS_USERNAME}
WLS_ADMIN_SERVER_PASSWORD=${WLS_PASSWORD}
WLS_ADMIN_SERVER_CONFIRM_PASSWORD=${WLS_PASSWORD}
NODE_MANAGER_PASSWORD=${WLS_PASSWORD}
NODE_MANAGER_CONFIRM_PASSWORD=${WLS_PASSWORD}
ORACLE_INSTANCE_HOME_LOCATION=${GC_INST}
CONFIGURE_ORACLE_SOFTWARE_LIBRARY=true
SOFTWARE_LIBRARY_LOCATION=${SOFTWARE_LIBRARY}
DATABASE_HOSTNAME=${DATABASE_HOSTNAME}
LISTENER_PORT=${LISTENER_PORT}
SERVICENAME_OR_SID=${PDB_NAME}

SYS_PASSWORD=${SYS_PASSWORD}
SYSMAN_PASSWORD=${SYSMAN_PASSWORD}
SYSMAN_CONFIRM_PASSWORD=${SYSMAN_PASSWORD}
DEPLOYMENT _SIZE=SMALL
AGENT_REGISTRATION_PASSWORD=${AGENT_PASSWORD}
AGENT_REGISTRATION_CONFIRM_PASSWORD=${AGENT_PASSWORD}
PLUGIN_SELECTION={}

b_upgrade=false

EM_INSTALL_TYPE=NOSEED

CONFIGURATION_TYPE=LATER

CONFIGURE_SHARED_ LOCATION_BIP=false

EOF

. Run the installer.

./em13300_linux64.bin -silent -responseFile /tmp/install.rsp -J-Djava.io.tmpdir=/u01/tmp/

. The the end of a successful install, run the root script.

sh ${MW_HOME}/allroot.sh

. Create the the configuration response file..

cat > /tmp/config.rsp <<EOF
RESPONSEFILE_VERSION=2.2.1.0.0
UNIX_GROUP_NAME=${UNIX_GROUP_NAME}
INVENTORY_LOCATION=${ORA_INVENTORY}
SECURITY_UPDATES_VIA_MYORACLESUPPORT=false
DECLINE_SECURITY_UPDATES=true
INSTALL_UPDATES_SELECTION=skip
ORACLE_MIDDLEWARE_HOME_LOCATION=${MW_HOME}
ORACLE_HOSTNAME=${ORACLE_HOSTNAME}
AGENT_BASE_DIR=${AGENT_BASE}
WLS_ADMIN_SERVER_USERNAME=${WLS_USERNAME}
WLS_ADMIN_SERVER_PASSWORD=${WLS_PASSWORD}
WLS_ADMIN_SERVER_CONFIRM_PASSWORD=${WLS_PASSWORD}
NODE_MANAGER_PASSWORD=${WLS_PASSWORD}
NODE_MANAGER_CONFIRM_PASSWORD=${WLS_PASSWORD}
ORACLE_INSTANCE_HOME_LOCATION=${GC_INST}
CONFIGURE_ORACLE_SOFTWARE_LIBRARY=true
SOFTWARE_LIBRARY_LOCATION=${SOFTWARE_LIBRARY}

DATABASE_HOSTNAME=${DATABASE_HOSTNAME}
LISTENER_PORT=${LISTENER_PORT}

SERVICENAME_OR _SID=${PDB_NAME}
SYS_PASSWORD=${SYS_PASSWORD}
SYSMAN_PASSWORD=${SYSMAN_PASSWORD}
SYSMAN_CONFIRM_PASSWORD=${SYSMAN_PASSWORD}
DEPLOYMENT _SIZE=SMALL
AGENT_REGISTRATION_PASSWORD=${AGENT_PASSWORD}
AGENT_REGISTRATION_CONFIRM_PASSWORD=${AGENT_PASSWORD}
PLUGIN_SELECTION={}

b_upgrade=false

EM_INSTALL_TYPE=NOSEED
CONFIGURATION_TYPE=ADVANCED
CONFIGURE_SHARED_LOCATION_BIP=false

EOF

6. Run the configuration. This will take a very long time.

${MW_HOME}/sysman/install/ConfigureGC.sh -silent -responseFile /tmp/config.rsp

At the end of the installation you'll be provided a list of URLs and post-installation steps.

Oracle Things

Oracle ORDS and Apache

Before using ORDS, you need a database and APEX. Go here to do that. Download ORDS at Oracle.

Installation of ORDS

The Oracle Rest Data Services (ORDS) installation consists of unzipping the downloaded archive,
running the configuration command, then deploying. This setup is going to run ORDS in standalone
mode with Apache HTTP to proxy requests.

As oracle user.
Download the ORDS zip to /tmp.

Extract the installer.

cd /tmp
mkdir -p /u01/ords
unzip ords-20.*.zip -d /u01/ords

Make a backup of the original properties file

myv /u0l/ords/params/{ords_params.properties,ords_params.properties.orig}

Create a ords_params.properties file.

cat > /uO0l/ords/params/ords_params.properties <<EOF
db.hostname=oral9c.core.example.com

db.port=1521

db.servicename=pdbl

db.sid=cdbl

db.username=APEX_PUBLIC_USER
db.password=Som3bTt3rpwd

migrate.apex.rest=false

plsgl.gateway.add=true

rest.services.apex.add=true

rest.services.ords.add=true

https://books.clusterapps.com/books/deployments/page/oracle-database-19c-ee
https://www.oracle.com/database/technologies/appdev/rest-data-services-downloads.html

schema.tablespace.default=SYSAUX
schema.tablespace.temp=TEMP
standalone.mode=true
standalone.use.https=true
standalone.http.port=8080
standalone.static.path=/home/oracle/apex/images
user.apex.listener.password=Som3bTt3rpwd
user.apex.restpublic.password=Som3bTt3rpwd
user.public.password=Som3bTt3rpwd
user.tablespace.default=APEX
user.tablespace.temp=TEMP

sys.user=SYS

sys.password=Som3bTt3rpwd
restEnabledSql.active=true

feature.sdw=true

database.api.enabled=true

EOF

Change to the ords directory and start the standalone instance.

cd /u0l/ords
$JAVA_HOME/bin/java -jar ords.war standalone

Configuration of Apache httpd to map
ORDS

The last step is to configure Apache to map HTTP-requests to ORDS and therefore APEX engine.

For this, add a custom httpd configuration file. By default, every .conf file placed in the
etc/httpd/conf.d/ directory is read by httpd as an additional configuration file to the main
/etc/httpd/conf/httpd.conf config file.

Create the apex.conf file in the etc/httpd/conf.d/ directory with the contents as below:

proxy ORDS
<VirtualHost *:80>
ServerName example.com

ServerAlias www.example.com

alias for APEX static files

Alias "/i" "/var/www/apex/images/"

uncomment the line below if you want
to redirect traffic to ORDS from root path

RedirectMatch permanent "~/$" "/ords"

proxy ORDS requests to tomcat
ProxyRequests off
<Location "/ords">
ProxyPass "https://localhost:8443/ords"
ProxyPassReverse "https://localhost:8443/ords"
</Location>

</VirtualHost>

Tell SELinux (Yes, that should be running) to allow Apache to communicate to ORDS.

setsebool httpd_can_network_connect on

Oracle Things

Oracle Response Files

Oracle Database Install

Creating a response file for a silent installation of Oracle Database is a common task that allows
you to automate the installation process without needing to interact with the graphical user
interface. Below is an example response file for installing Oracle Database 19c on a Linux system.
Keep in mind that response files can significantly vary depending on the Oracle Database version
and the specific configurations you need. Adjustments may be required to fit your particular
environment and requirements.

This example assumes you're installing Oracle Database 19c with a typical installation type, which
includes the creation of a general-purpose database. You'll need to replace placeholders (like
<YOUR_VALUE_HERE>) with actual values relevant to your setup.

Create a file named db_install.rsp and include the following content:

[GENERAL]
oracle.install.responseFileVersion=/oracle/install/rspfmt_dbinstall_response_schema_v19.0.0
oracle.install.option=INSTALL DB_SWONLY

ORACLE_HOSTNAME=<YOUR_HOSTNAME>

UNIX_GROUP_NAME=oinstall

INVENTORY_LOCATION=/u01/app/oralnventory

SELECTED_LANGUAGES=en

ORACLE_HOME=/u01/app/oracle/product/19.0.0/dbhome_1

ORACLE_BASE=/uO1/app/oracle

[INSTALL]

nodelist=<YOUR_HOSTNAME>
oracle.install.db.InstallEdition=EE
oracle.install.db.OSDBA_GROUP=dba
oracle.install.db.OSOPER_GROUP=dba
oracle.install.db.OSBACKUPDBA GROUP=dba
oracle.install.db.OSDGDBA_GROUP=dba
oracle.install.db.OSKMDBA_GROUP=dba
oracle.install.db.OSRACDBA_GROUP=dba

oracle.

oracle.

oracle

oracle.
oracle.
oracle.
oracle.
oracle.
oracle.
oracle.
oracle.
oracle.
oracle.
oracle.

oracle.

oracle

oracle.

install.db.rootconfig.executeRootScript=true

install.db.config.starterdb.type=GENERAL_PURPOSE

.install.db.config.starterdb.globalDBName=<YOUR_GLOBAL DBNAME>

install.db.config.starterdb.SID=<YOUR_SID>
install.db.ConfigureAsContainerDB=false
install.db.config.PDBName=<YOUR_PDB_NAME>
install.db.config.starterdb.characterSet=<YOUR_CHARACTER_SET>
install.db.config.starterdb.memoryOption=true
install.db.config.starterdb.memoryLimit=<MEMORY_LIMIT_IN_MB>
install.db.config.starterdb.installExampleSchemas=false
install.db.config.starterdb.password.ALL=<YOUR_PASSWORD>
install.db.config.starterdb.storageType=FS
install.db.config.starterdb.datalLocation=/u01l/oradata
install.db.config.starterdb.recoveryLocation=<YOUR_RECOVERY_LOCATION>

install.db.config.starterdb.enableSecuritySettings=true

.install.db.config.starterdb.registerWithDirService=false

install.db.config.starterdb.listeners=<LISTENER_NAME>

[DELPHIX]
DELPHIX_DB_CONF=<DELPHIX_CONFIGURATION_OPTION>

Replace the placeholders with your specific configuration:

e <YOUR_HOSTNAME> : The hostname of your server.

e <YOUR_GLOBAL DBNAME> : The global database name.

e <YOUR SID> : The system identifier for your database.

e <YOUR _PDB_NAME> : The pluggable database name, if you're using the multitenant
architecture.

<YOUR _CHARACTER _SET> : The character set for your database (e.g., AL32UTF8).
<MEMORY_LIMIT_IN_MB> : The memory limit for your database in megabytes.
<YOUR_PASSWORD> : The password for SYS, SYSTEM, and other default administrative

accounts.

<YOUR_RECOVERY_LOCATION> : The path for the recovery area.
<LISTENER NAME> : The name of the Oracle Net listener.
<DELPHIX_CONFIGURATION_OPTION> : Specific to your Delphix configuration, if applicable.

To run the Oracle Database installer silently using your response file, execute the following
command from the directory where your Oracle Database installation files are located:

.Jruninstaller -silent -responseFile /path/to/db_install.rsp -ignorePrereqFailure

Replace /path/to/db_install.rsp with the actual path to your response file.

Important Notes:

e Ensure that all prerequisites for Oracle Database installation are met before running the
installer, including any required packages, kernel parameters, and user and group
configurations.

e The -ignorePrereqgFailure flag is optional and allows the installer to continue even if some
prerequisites are not met. It's generally recommended to address all prerequisite checks
for a production environment.

e Running the root scripts (/u01/app/oralnventory/orainstRoot.sh and
/u01/app/oracle/product/19.0.0/dbhome_1/root.sh) as the root user is typically required to
complete the installation. The installer will prompt you for this if not included in the
response file.

e This example does not cover all possible configurations and options. Review the Oracle
Database Installation Guide for your specific version and adjust the response file
accordingly.

Database Creation

To create a new Oracle Database that includes a new Container Database (CDB) with a Pluggable
Database (PDB), and to ensure that logs, archive logs, data files, and the Fast Recovery Area are
on different volumes, you will use a response file tailored for the database creation process using
the Database Configuration Assistant (DBCA).

The character set compatible with WebLogic SOA Suite RCU is typically AL32UTF8, as it supports
Unicode and is widely used for applications requiring extensive character support.

Given the specifications, the response file will be crafted to meet the following requirements:

Create a new CDB and PDB

Allocate 6GB of RAM to the database and enable Automatic Memory Management

Place logs, archive logs, data files, and the Fast Recovery Area on different volumes

Use AL32UTF8 as the character set to ensure compatibility with WebLogic SOA Suite RCU

Below is an example response file template for creating a new Oracle CDB with a PDB. Please
adjust paths and names to suit your environment.

[GENERAL]
responseFileVersion=/oracle/assistants/dbca/rspfmt_dbca.rsp
GDBNAME = "cdbl.example.com"

SID = "cdbl"

CREATEASCONTAINERDATABASE = true

NUMBEROFPDBS = 1

PDBNAME = "pdb1"

PDBADMINPASSWORD = "<Your PDB_Admin_Password>"

TEMPLATENAME = "General_Purpose.dbc"
CHARACTERSET = "AL32UTF8"
NATIONALCHARACTERSET= "AL16UTF16"
DATABASETYPE = "MULTIPURPOSE"

[createDatabase]

gdbName = cdbl

sid = cdbl
createAsContainerDatabase=true
numberOfPDBs=1

pdbName=pdbl
templateName=General_Purpose.dbc
characterSet=AL32UTF8
nationalCharacterSet=AL16UTF16
databaseType=MULTIPURPOSE
automaticMemoryManagement=true
totalMemory=6000

storageType=FS
datafileDestination=/u02/oradata
recoveryAreaDestination=/u03/fast_recovery_area
redoLogFileSize=300
emConfiguration=NONE
listeners=LISTENER

[createContainerDatabase]

gdbName = cdbl

templateName = General_Purpose.dbc

sid = cdbl

createAsContainerDatabase = true

numberOfPDBs = 1

pdbName = pdbl

createPDBTemplate = "PDB Admin Managed Template"
pdbAdminUserName = admin

pdbAdminPassword = <Your_PDB_Admin_Password>
datafileDestination = /u02/oradata/cdbl/
recoveryAreaDestination = /u03/fast_recovery_area/cdbl/

storageType = FS

[CONFIGUREDATABASE]
LOGFILEDEST_1 = "/u04/logs/"

LOGFILEDEST_2 = "/uO5/archive_logs/"
LOGFILEDEST_3 = "/u02/oradata/"

Replace <Your PDB_Admin_Password> with a secure password for your PDB admin user.

Notes:

e Paths: /u02/oradata, /u03/fast recovery area, /u04/logs, and /uO5/archive logs should be
replaced with the actual mount points or directories you've set up on your system for data
files, the Fast Recovery Area, logs, and archive logs, respectively.

e Total Memory: The totalMemory parameter is set to 6000, representing approximately
6GB of RAM dedicated to the Oracle instance. Oracle will manage this memory
automatically because automaticMemoryManagement is set to true.

e Character Sets: CHARACTERSET is set to AL32UTF8 , and NATIONALCHARACTERSET is set to
AL16UTF16 , which are suitable for globalized applications and compatibility with WebLogic
SOA Suite RCU.

e Listeners: This template assumes a listener named LISTENER is already configured on the
default port (1521). Adjust as necessary for your environment.

Execution

To create the database using the response file, you would typically use the dbca command-line
tool, specifying the response file with the -silent and -responseFile options:

dbca -silent -createDatabase -responseFile /path/to/your_response_file.rsp

Make sure to replace /path/to/your_response_file.rsp with the actual path to your response file.

Important: This response file template is provided as a starting point. You may need to adjust
values and paths according to your specific Oracle Database version, system architecture, and
requirements. Always review the Oracle Database documentation for the version you're installing
to ensure compatibility and correctness.

Oracle Things

Oracle XE and APEX on
CentOS 7

Downloading the software

The first thing to do is download the software from Oracle Technology Network:

e Database Downloads - you will need the package for Linux x64 and the preinstall RPM
package.

e Developer Tools/Oracle REST Data Services/Downloads

e Developer Tools/Application Express/Downloads

After the files have been downloaded, transfer them to the server.

Installation of RDBMS

After you checked them, to install the RDBMS, you need to install the preinstall RPM package first
and then install the database software as following:

wget https://yum.oracle.com/repo/OracleLinux/OL7/latest/x86_64/getPackage/oracle-database-preinstall-18c-1.0-
1.el7.x86_64.rpom

yum install oracle-database-preinstall-18c* -y

yum install oracle-database-xe-18c* -y

yum install httpd tomcat -y

The user oracle and the group oinstall are created during the package installation. A default user
environment is created during the set up process. You can set a password for this user by invoking
passwd oracle command. This user is the owner of the /opt/oracle directory where the Oracle
Database is located and this must stay unchanged.

chown oracle:oinstall /opt/oracle

When the packages are installed and the user is set up, you need to run the initial database
configuration script and answer all of the questions.

http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/apex/downloads/index.html

/etc/init.d/oracle-xe-18c configure

After answering the questions it is going to take several minutes to initialize the database.

Setting up environment

Set up Oracle Database environment variables .

echo 'ORACLE_SID=XE' >> /etc/profile.d/oraenv.sh
echo 'ORAENV_ASK=NO' >> /etc/profile.d/oraenv.sh
echo '. Jopt/oracle/product/18c/dbhomeXE/bin/oraenv -s' >> /etc/profile.d/oraenv.sh

. [etc/profile.d/oraenv.sh

Enable Oracle Database XE service for automatic startup:

systemctl enable oracle-xe-18c

Connecting to database

And we are ready to log into the database.

sqlplus /nolog

Check if everything is good.

-- connect to the database

sqlplus /nolog

-- change role

CONNECT SYS as SYSDBA

-- basic query to check everything came up right

select * from dual;

-- exit the database

exit

To make it easier to connect to the pluggable database, edit thetnsnames.ora file and add there a
new connection descriptor

vim /opt/oracle/product/18c/dbhomeXE/network/admin/tnsnames.ora

Add the following after the standard XE record:

PDB1 =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = XEPDB1)
)

Installation of APEX

Change your directory back to /root, unzip the APEX archive and make the user oracle the owner
of the directory. Considering we are installing the 19.2 version of APEX, it would look like this.

cd /root
mkdir -p /opt/oracle/apex
unzip apex_19.*.zip -d /opt/oracle

chown -R oracle:oinstall /opt/oracle/apex

Create an allow all ACL for APEX sql file in the APEX directory. This one is called apex_acl.sql.

BEGIN
BEGIN
dbms_network_acl_admin.drop_acl(acl => 'all-network-PUBLIC.xml');
EXCEPTION
WHEN OTHERS THEN

NULL;
END;
dbms_network _acl_admin.create_acl(acl => 'all-network-PUBLIC.xml",
description => 'Allow all network traffic',
principal => 'PUBLIC',
is_grant => TRUE,
privilege => 'connect');
dbms_network_acl_admin.add_privilege(acl => 'all-network-PUBLIC.xml",

principal => 'PUBLIC',
is_grant => TRUE,

privilege => 'resolve');
dbms_network_acl_admin.assign_acl(acl => 'all-network-PUBLIC.xml",
host => "*');
END;
/
sho err
COMMIT;
/

From the APEX directory connect to the pluggable database as sysdba and run the installation
scripts.

cd /opt/oracle/apex
-- connect to the database

sqlplus /nolog

-- change role

CONN sys@pdbl AS SYSDBA

-- run the script to install a full development environment

@apexins.sql SYSAUX SYSAUX TEMP /i/

-- create an instance administrator user and set their password

@apxchpwd.sql

-- unlock APEX public user
ALTER USER APEX_PUBLIC_USER ACCOUNT UNLOCK;
ALTER USER APEX_PUBLIC_USER IDENTIFIED BY "SOm3aw3sO0m3Pw!";

-- configure REST Data Services

@apex_rest_config.sql

-- run the ACL setup

@apex_acl.sql

-- disconnect from the database

exit

Copy APEX static files to the web server directory. They will be used to serve static images from
the proxy.

mkdir -p /var/www/apex/images

cp -a /opt/oracle/apex/images/. /[var/www/apex/images

The Application Express installation is complete.

Installation of ORDS

The Oracle Rest Data Services (ORDS) installation consists of unzipping the downloaded archive,
running the configuration command, and then deploying the ords.war file into the Tomcat webapps
folder.

cd /root
mkdir -p /opt/oracle/ords

unzip ords-19.*.zip -d /opt/oracle/ords

Run the ORDS configuration command with the advanced mode to run the interactive installation
process.

cd /opt/oracle/ords

java -jar ords.war install advanced

When prompted for ORDS configuration directory, enter config .
Then provide the connection info to your pluggable database XEPDB1

Follow the on screen instructions.

After the configuration is completed, the values are saved in opt/oracle/ords/config/ords/defaults.xml
file. It can be modified there. See more at Oracle Docs.

The tomcat user (created as part of Tomcat install) must have read-write access to the ORDS
configuration folder:

chown -R tomcat:tomcat /opt/oracle/ords/config

Deploy ORDS to Tomcat application server. Copy the ords.war into the Tomcat webapps directory
for this

cp -a /opt/oracle/ords/ords.war /usr/share/tomcat/webapps/

Done with ORDS and Tomcat, on to Apache.

Configuration of Apache httpd to map
ORDS

The last step is to configure Apache to map HTTP-requests to ORDS and therefore APEX engine.

For this, add a custom httpd configuration file. By default, every .conf file placed in the
etc/httpd/conf.d/ directory is read by httpd as an additional configuration file to the main
/etc/httpd/conf/httpd.conf config file.

Create the apex.conf file in the etc/httpd/conf.d/ directory with the contents as below:

forward ORDS tomcat

<VirtualHost *:80>
uncomment the lines below if you plan to serve different domains
on this web server, don't forget to change the domain name
ServerName yourdomain.tld

ServerAlias www.yourdomain.tld

alias for APEX static files

Alias "/i" "/var/www/apex/images/"

uncomment the line below if you want
to redirect traffic to ORDS from root path

RedirectMatch permanent "~ /$" "/ords"

proxy ORDS requests to tomcat
ProxyRequests off
<Location "/ords">
ProxyPass "ajp://localhost:8009/ords"
ProxyPassReverse "ajp://localhost:8009/ords"
</Location>

</VirtualHost>

Tell SELinux (Yes, that should be running) to allow Apache to communicate to tomcat.

setsebool httpd_can_network_connect on

Now you are ready to save the configuration file and restart the services.

systemctl restart httpd

systemctl restart tomcat

Open a few firewall ports. Yes, the the firewall should also be on.

firewall-cmd --permanent --add-service={http,https}

firewall-cmd --reload

And finally, access APEX from your web browser using a link like http://yourdomain.tld/ords (or
http://yourdomain.tld in case you switched on force redirection), where yourdomain.tid is the domain
name or the IP-address of your server.

Web Applications

Web Applications

BookStack on CentOS 7

BookStack is a simple, self-hosted, easy-to-use platform for sharing and storing information.
What you need:

Fresh install of CentOS 7 or other RHEL7 clone.

EPEL and IUS Community Project repositories.

Add the repositories

yum -y install epel-release

yum -y install https://centos7.iuscommunity.org/ius-release.rpm

Update the system and install the packages
yum update -y && reboot

yum -y install git mariadb101lu-server nginx php72u php72u-cli php72u-fpm php72u-gd php72u-json php72u-
mbstring php72u-mysqlnd php72u-openssl php72u-tidy php72u-tokenizer php72u-xml php72u-ldap

Start and secure MySQL

systemctl restart mariadb.service # Start MySQL service
mysql_secure_installation # Set root password

mysql -u root -p # Enter root password

Create database and user

CREATE DATABASE IF NOT EXISTS bookstackdb DEFAULT CHARACTER SET utf8 COLLATE utf8 general_ci;
GRANT ALL PRIVILEGES ON bookstackdb.* TO 'bookstackuser'@'localhost' IDENTIFIED BY
'YourAwesomePassword' WITH GRANT OPTION;

FLUSH PRIVILEGES;

quit

Configure Nginx

Update SOCKS permissions for php-fpm

https://centos7.iuscommunity.org/ius-release.rpm

Update /etc/php-fpom.d/www.conf configuration. Look for and update the following settings.

listen = /var/run/php-fpm.sock
listen.owner = nginx ; SOCKS permission
listen.group = nginx ; SOCKS permission
listen.mode = 0660 ; SOCKS permission
user = nginx ; PHP-FPM running user
group = nginx ; PHP-FPM running group

php_value[session.save_path] = /var/www/sessions

Backup original Nginx configuration file
mv /etc/nginx/nginx.conf /etc/nginx/nginx.conf.orig\
Create a new config file

vim /etc/nginx/nginx.conf

user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;

pid /run/nginx.pid;
include /usr/share/nginx/modules/*.conf;
events {

worker_connections 1024;

http {
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body bytes sent "$http_referer" '
"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

sendfile on;
tcp_nopush on;
tcp_nodelay on;

keepalive_timeout 65;

types_hash_max_size 2048;

include /etc/nginx/mime.types;

default_type application/octet-stream;

include /etc/nginx/conf.d/*.conf;

Bookstack configuration

vim /etc/nginx/conf.d/bookstack.conf

server {
listen 80;
server_name localhost;

root /var/www/BookStack/public;

access_log /var/log/nginx/bookstack access.log;

error_log /var/log/nginx/bookstack_error.log;

client_max_body_size 1G;

fastcgi_buffers 64 4K;
index index.php;

location / {
try_files $uri $uri/ /index.php?$query_string;
}

location ~ ~/(?:\.htaccess|data|config|db_structure\.xm||[README) {
deny all;
}

location ~ \.php(?:$]/) {
fastcgi_split_path_info ~(.+\.php)(/.+)$;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_path_info;

fastcgi_pass unix:/var/run/php-fpm.sock;

location ~*\.(?:jpg|jpeg|giflomp]|ico|png|css|js|swf)$ {
expires 30d;
access_log off;
}
}

Setting up composer

cd /usr/local/bin # Enter the directory where composer will be installed
curl -sS https://getcomposer.org/installer | php # Install composer

mv composer.phar composer # Rename composer

Download BookStack code

cd /var/www # Change to where BookStack will be installed

mkdir /var/www/sessions # Create php sessions directory

git clone https://github.com/BookStackApp/BookStack.git --branch release --single-branch # Clone the latest
from the release branch

cd BookStack && composer install # Change to the BookStack directory, and let composer do the rest

Create the .env file
Update the database settings. The rest of the parameters are safe defaults. A sample is available

here:

cp .env.example .env # Copy the example config

vim .env # Update the new config with database.

Set permissions and generate the database. You should still be in the BookStack directory.

php artisan key:generate --force # Generate and update APP_KEY
chown -R nginx:nginx /var/www/{BookStack,sessions} # Change ownership to the webserver

php artisan migrate --force # Generate database tables

Setup Let's Encrypt

yum install -y certbot-nginx # Install certbot

certbot --nginx -d books.clusterapps.com # Run certbot. Follow the prompts.

Final cleanup

https://git.clusterapps.com/snippets/1

firewall-cmd --permanent --add-service={http,https}
systemctl enable nginx.service mariadb.service php-fpm.service

systemctl reboot

Once the system has finished booting, open a browser and head to https://your.url

https://your.url

Web Applications

Evergreen ILS on Ubuntu
18.04

Evergreen is highly-scalable software for libraries that helps library patrons find library materials,
and helps libraries manage, catalog, and circulate those materials, no matter how large or complex
the libraries.

Evergreen is open source software, licensed under the GNU GPL, version 2 or later.

Learn more here. This guide will be on an Ubuntu 18.04 server.

Some reference for the installation

e The user Linux account is the account that you use to log onto the Linux system as a
regular user.

e The root Linux account is an account that has system administrator privileges. Look for #
on the console. Sometimes sudo will be used to run single commands as the root user.

e The opensrf Linux account is an account that you will create as part of installing
OpenSREF.

e The minimum supported version of OpenSRF is 3.0.0.

e PostgreSQL is required The minimum supported version is 9.4.

e The postgres Linux account is created automatically when you install the PostgreSQL
database server.

e The evergreen PostgreSQL account is a superuser that you will create to connect to the
database server.

e The egadmin Evergreen account is an administrator account for Evergreen.

[) @]

OpenSRF

First download and unpack the OpenSRF source as the Linux user.

wget https://evergreen-ils.org/downloads/opensrf-3.1.0.tar.gz
tar -xvf opensrf-3.1.0.tar.gz

cd opensrf-3.1.0/

https://evergreen-ils.org/about-us/

Issue the following commands from the opensrf folder as the root Linux account to install
prerequisites.

sudo apt-get install make

sudo make -f src/extras/Makefile.install ubuntu-bionic

As the Linux user, use the configure command to configure OpenSRF, and the make command to
build OpenSRF. The default installation prefix (PREFIX) for OpenSRF is /opensrf/ .

.Jconfigure --prefix=/openils --sysconfdir=/openils/conf

make

If there were no build errors, then as root run the make install.

sudo make install

Create the opensrf user as the root user.

sudo useradd -m -s /bin/bash opensrf
sudo su -c 'echo "export PATH=\$PATH:/openils/bin" >> /home/opensrf/.bashrc’
sudo passwd opensrf

sudo chown -R opensrf:opensrf /openils
Define your public and private OpenSRF domains.
This is a single server setup so the /etc/hosts file will be used to add the public and private

addresses.
Use the root user to add the following to /etc/hosts file.

127.0.1.2 public.localhost public
127.0.1.3 private.localhost private

Adjusting the system dynamic library path.

sudo su -c ‘echo /openils/lib > /etc/Id.so.conf.d/opensrf.conf’

sudo Idconfig

OpenSRF requires an XMPP (Jabber) server. The ejabberd packages will be used.
First stop the existing service.

sudo systemctl stop ejabberd.service

Open /etc/ejabberd/ejabberd.yml and make the following changes as the root user:

If you don't want to edit this file, download a preconfigured one fromhere

1. Define your public and private domains in the hosts directive. For example:

host s:
- "l ocal host"
- "private.local host"
- "public.local host"

Change starttls_required to false

Change auth_password format to plain

Change shaper: normal and fast values to 500000
Increase the max_user_sessions: all: value to 10000
Comment out the mod offline directive

o Uk WwWwN

##mod_offline:

##access_max_user_messages: max_user_offline_messages
7. Uncomment the mod_legacy auth directive

Or use the downloaded file.

sudo mv /etc/ejabberd/{ejabberd.yml,ejabberd.yml.org}
sudo wget -O /etc/ejabberd/ejabberd.yml https://git.clusterapps.com/snippets/6/raw

Start the ejabberd server:

sudo systemctl start ejabberd.service
On each domain, you need two Jabber users to manage the OpenSRF communications:

e a router user, to whom all requests to connect to an OpenSRF service will be routed; this
Jabber user must be named router

e an opensrf user, which clients use to connect to OpenSRF services; this user can be
named anything.

sudo ejabberdctl register router private.localhost UseARealPasswordNotthisone
sudo ejabberdctl register opensrf private.localhost UseARealPasswordNotthisone
sudo ejabberdctl register router public.localhost UseARealPasswordNotthisone

sudo ejabberdctl register opensrf public.localhost UseARealPasswordNotthisone

As the opensrf Linux account, copy the example configuration files to create your locally OpenSRF
configuration.

https://git.clusterapps.com/snippets/6/raw

sudo su - opensrf
cd /openils/conf
cp opensrf_core.xml.example opensrf_core.xml

cp opensrf.xml.example opensrf.xml

Edit opensrf core.xml file to update the username / password pairs to match the Jabber user
accounts you created.

1. <config><opensrf> = use the private Jabber opensrf user

2. <config><gateway> = use the public Jabber opensrf user

3. <config><routers><router> = use the public Jabber router user
4. <config><routers><router> = use the private Jabber router user

Enable the opensrf Linux account to use srfsh as the opensrf user.

cp /openils/conf/srfsh.xml.example /home/opensrf/.srfsh.xml

Update the password to match the password you set for the Jabber opensrf user at the
private.localhost domain.

vim /home/opensrf/.srfsh.xml

Start all OpenSRF services as the opensrf Linux account.

osrf_control --localhost --start-all

1. Start the srfsh interactive OpenSRF shell by issuing the following command as the
opensrf Linux account:
Starting the srfsh interactive OpenSRF shell

srfsh

2. Issue the following request to test the opensrf.math service:

srfsh# request opensrf.nmath add 2,2
You should receive the value 4.

Install WebSockets as the root user.

apt-get install git-core

cd /tmp

git clone https://github.com/disconnect/apache-websocket
cd apache-websocket

apxs2 -i -a -c mod_websocket.c

Create the websocket Apache instance

sh /usr/share/doc/apache2/examples/setup-instance websockets

Remove from the main apache instance

a2dismod websocket

Change to the directory into which you unpacked OpenSRF, then copy config files.

cp examples/apache_24/websockets/apache2.conf /etc/apache2-websockets/

Add configuration variables to the end of /etc/apache2-websockets/envvars.

export OSRF_WEBSOCKET_IDLE_TIMEOUT=120

export OSRF_WEBSOCKET IDLE_CHECK_INTERVAL=5

export OSRF_WEBSOCKET_CONFIG_FILE=/openils/conf/opensrf_core.xml
export OSRF_WEBSOCKET_CONFIG_CTXT=gateway

export OSRF_WEBSOCKET_MAX_REQUEST_WAIT_TIME=600

Before you can start websockets, you must install a valid SSL certificate in /etc/apache2/ssl/ .

Evergreen application

Download and extract the archive as the Linux user.

wget https://evergreen-ils.org/downloads/Evergreen-ILS-3.3.0.tar.gz
tar -xvf Evergreen-ILS-3.3.0.tar.gz
cd Evergreen-ILS-3.3.0/

Issue the following commands as the root Linux account to install prerequisites using the
Makefile.install prerequisite installer

make -f Open-ILS/src/extras/Makefile.install ubuntu-bionic

From the Evergreen source directory, issue the following commands as the user Linux account to
configure and build Evergreen:

PATH=/openils/bin:$PATH ./configure --prefix=/openils --sysconfdir=/openils/conf

make

Issue the following command as the root Linux account to install Evergreen

sudo make install

Change ownership of the Evergreen files

sudo chown -R opensrf:opensrf /openils

Run Idconfig as the root Linux account.

sudo Idconfig

Issue the following commands as the root Linux account to copy the Apache configuration files
from the Evergreen source archive.

sudo cp Open-ILS/examples/apache_24/eg_24.conf /etc/apache2/sites-available/eg.conf
sudo cp Open-ILS/examples/apache_24/eg_vhost 24.conf /etc/apache2/eg_vhost.conf
sudo cp Open-ILS/examples/apache_24/eg startup /etc/apache2/

As the root Linux account, edit the eg.conf file that you copied.

To enable access to the offline upload / execute interface from any workstation on any network,
make the following change (and note that you must secure this for a production instance):

e Replace Require host 10.0.0.0/8 with Require all granted

As the root Linux account, edit /etc/apache2/envvars . Change export APACHE_ RUN_USER=www-data to
export APACHE_RUN_USER=opensrf .

As root edit /etc/apache2/apache2.conf and make the following changes.

sudo vim /etc/apache2/apache2.conf

1. Change KeepAliveTimeout to 1.
2. Change MaxKeepAliveRequests to 100 .

As the root Linux account, configure the prefork module to start and keep enough Apache servers
available to provide quick responses to clients.

sudo vim /etc/apache2/mods-available/mpm_prefork.conf

<IfModule mpm_prefork_module>
StartServers 15
MinSpareServers 5

MaxSpareServers 15

MaxRequestWorkers 75
MaxConnectionsPerChild 500
</IfModule>

As the root user, enable the mpm_prefork module:

sudo a2dismod mpm_event

sudo a2zenmod mpm_prefork

As the root Linux account, enable the Evergreen site:

sudo a2dissite 000-default

sudo a2ensite eg.conf

As the root Linux account, enable Apache to write to the lock directory

sudo chown opensrf /var/lock/apache2

To configure OpenSRF for Evergreen, issue the following commands as the opensrf Linux account.
(Yes you did edit these files earlier but now there are more settings)

cp -b /openils/conf/opensrf _core.xml.example /openils/conf/opensrf _core.xml

cp -b /openils/conf/opensrf.xml.example /openils/conf/opensrf.xml

Edited the opensrf core.xml as the opensrf user and enter the same passwords from the OpenSRF
install steps.

To enable the default set of hooks, issue the following command as the opensrf Linux account:

cp -b /openils/conf/action_trigger filters.json.example /openils/conf/action_trigger_filters.json

Evergreen database

In production environments, this would be on a dedicated server or cluster. For this deployment the
database will be on the same server. If you are serious about your setup you would never install
the application and the database on the same server. This is for testing only. For the best
performance, run PostgreSQL on RHEL or Solaris.

Installing PostgreSQL server packages as root. Use the Makefile provided in the Evergreen archive.

sudo make -f Open-ILS/src/extras/Makefile.install postgres-server-ubuntu-bionic

Issue the following command as the postgres Linux account to create a new PostgreSQL
superuser named evergreen .

sudo su - postgres

Ccreateuser -s -P evergreen

Issue the following command as the root Linux account from inside the Evergreen source
directory, replacing <user>, <password>, <hostname>, <port>, and <dbname> with the
appropriate values for your PostgreSQL database (where <user> and <password> are for the
evergreen PostgreSQL account you just created), and replace <admin-user> and <admin-pass>
with the values you want for the egadmin Evergreen administrator account:

perl Open-ILS/src/support-scripts/eg_db_config --update-config \
--service all --create-database --create-schema --create-offline \
--user <user> --password <password> --hostname <hostname> --port <port>\

--database <dbname> --admin-user <admin-user> --admin-pass <admin-pass>

If you add the --load-all-sample parameter to the eg db _config command, a set of authority and
bibliographic records, call numbers, copies, staff and regular users, and transactions will be loaded
into your target database. This sample dataset is commonly referred to as the concerto sample
data, and can be useful for testing out Evergreen functionality and for creating problem reports
that developers can easily recreate with their own copy of the concerto sample data.

Starting Evergreen

Start the memcached and ejabberd services

sudo systemctl enable --now ejabberd

sudo systemctl enable --now memcached

As the opensrf Linux account, start Evergreen. The -1 flag in the following command is only
necessary if you want to force Evergreen to treat the hostname as localhost ;

osrf_control -| --start-all

if you configured opensrf.xml using the real hostname of your machine as returned by perl -
ENet::Domain 'print Net::Domain::hostfgdn() . "\n";' , you should not use the -I flag. In a multi server setup,
do not use localhost.

As the opensrf Linux account, generate the Web files needed by the web staff client and catalogue
and update the organization unit proximity. Do this the first time you start Evergreen, and after
that each time you change the library org unit configuration.

autogen.sh

As the root Linux account, restart the Apache Web server:

systemctl restart apache2

Testing connections

Once you have installed and started Evergreen, test your connection to Evergreen via srfsh .
As the opensrf Linux account. <admin-user> <admin-pass> are the egadmin username and
password created earlier.

/openils/bin/srfsh

srfsh% login <admin-user> <admin-pass>

The output should look like this:

HHHUHHHHHHHHRAHHHHH BB HHRAHH R HBHHHHH R HHHHHHBHH
Received Data: "$2a$10$londKQogYvvF71H92Wwpme"

Request Completed Successfully
Request Time in seconds: 0.052501

Received Data: {

"ilsevent":0,

"textcode":"SUCCESS",

"desc":"Success",

"pid":32474,

"stacktrace":"oils_auth.c:636",

"payload":{
"authtoken":"bd4f67a646ee4c39e€923a272dc6c79a3",
"authtime":420

Request Completed Successfully
Request Time in seconds: 0.171812

Login Session: bd4f67a646ee4c39e923a272dc6c79a3. Session timeout: 420.000000

HEABHBHBHHBHBBHB R AR A BB H PR AR A BB HBHHRH BB HBHHS

Web Applications

Matomo on CentQS 7

Installing Matomo

Matomo, formerly known as Piwik, is an open source web analytics application. It rivals Google
Analytics and includes even more features and allows you to brand your brand and send out
custom daily, weekly, and monthly reports to your clients.

First let’s start by ensuring your system is up-to-date and has the needed repositories.

yum -y install epel-release

yum -y install https://centos7.iuscommunity.org/ius-release.rpm
yum clean all

yum -y update

reboot # if kernel updated

Install needed packages

yum -y install wget mariadb mariadb-server mysql httpd openssl mod_ssl php72u-json mod_php72u php72u-gd
php72u-imap php72u-ldap php72u-odbc pearlu php72u-xml php72u-xmlirpc php72u-mbstring php72u-mysqind
php72u-snmp php72u-soap php72u-tidy curl curl-devel mcrypt

Configure MySQL

systemctl restart mariadb.service # Start MySQL service
mysql_secure_installation # Set root password

mysql -u root -p # Enter root password

Add the database and user.

CREATE DATABASE IF NOT EXISTS matomodb DEFAULT CHARACTER SET utf8 COLLATE utf8 general ci;
GRANT ALL PRIVILEGES ON matomodb.* TO 'matomouser'@'localhost' IDENTIFIED BY 'YourAwesomePassword'
WITH GRANT OPTION;

FLUSH PRIVILEGES;

quit

Installing Matomo on CentOS 7.

https://idroot.us/tutorials/install-piwik-centos-7/

cd /var/www

wget https://builds.matomo.org/piwik.zip

Unpack the Matomo archive to the document root directory on your server.

unzip piwik.zip -d /var/www/html/

mv /var/www/html/piwik/ /var/www/html/matomo/

Update owner on Matomo files and folders

chown -R apache:apache /var/www/html/matomo

Configure Apache
Create Apache virtual host for Matomo . First create ‘/etc/httpd/conf.d/vhosts.conf’ file

vim /etc/httpd/conf.d/vhosts.conf

IncludeOptional vhosts.d/*.conf

Create the virtual host.

mkdir /etc/httpd/vhosts.d/

vim /etc/httpd/vhosts.d/yourdomain.com.conf

Add the following to the new vhost config.

<VirtualHost YOUR_SERVER_IP:80>

ServerAdmin webmaster@yourdomain.com
DocumentRoot /var/www/html/matomo
ServerName yourdomain.com

ServerAlias www.yourdomain.com

ErrorLog "/var/log/httpd/yourdomain.com-error_log"

CustomLog "/var/log/httpd/yourdomain.com-access_log" combined

<Directory "/var/www/html/matomo/">
Directorylndex index.html index.php
Options FollowSymLinks

AllowOverride All

Require all granted

</Directory>

</VirtualHost>

Start Apache

systemctl start httpd

Verify that Apache is running by checking the status of the service:

systemctl status httpd

Install certbot to handle SSL

yum install -y mod_ssl python-certbot-apache

Run Certbot to secure the Apache site

certbot --apache -d site.example.com

Enable services and reboot the server and make sure it works.

systemctl enable httpd mariadb

reboot
Browse to https://your.sitename.com and follow the Matomo setup steps.

For details see https://matomo.org/docs/installation/

Installing libmaxminddb

Install git and PHP development libraries.
yum -y install php72u-devel git automake autoconf libtool

To install the library you need to download it’s latest tar ball and extract it, or clone their git
repository

git clone --recursive https://github.com/maxmind/libmaxminddb

When cloning from git, run ./bootstrap from the libmaxminddb directory and then run the
commands.

https://your.sitename.com
https://matomo.org/docs/installation/
https://github.com/maxmind/libmaxminddb/releases/latest

.Jconfigure
make
sudo make install

sudo Idconfig

You can find more details about installing the library in their README

Installing Extension

After successfully installing libmaxmindb, you need to download or checkout MaxMind-DB-Reader-

php.
Then run the following commands from the top-level directory of this distribution:

cd ext
phpize
.Jconfigure
make

sudo make install

You then must load your extension. The recommend method is to add the following to your php.ini
file:

extension=maxminddb.so

Now restart the webserver and the GeolP 2 PHP provider should mention if the extension is loaded
in Matomo (Piwik) > Settings > Geolocation.

Note: You may need to install the PHP development package on your OS such as php5-dev for
Debian-based systems or php-devel for RedHat/Fedora-based ones.

If after installing, you receive an error that libmaxminddb.so.0 is missing you may need to add the
lib directory in your prefix to your library path. On most Linux distributions when using the default
prefix (/usr/local), you can do this by running the following commands:

echo /usr/local/lib >> /etc/ld.so.conf.d/local.conf

Idconfig

Download the GeolP database and copy it to Matomo’s path/to/matomo/misc/ subdirectory.

https://github.com/maxmind/libmaxminddb/blob/master/README.md#installing-from-a-tarball
https://github.com/maxmind/MaxMind-DB-Reader-php
https://github.com/maxmind/MaxMind-DB-Reader-php

wget https://geolite.maxmind.com/download/geoip/database/GeolLite2-City.tar.gz
cp Geolite2-City_20190312/GeolLite2-City.mmdb /path/to/matomo/misc/

Web Applications

mod GeolP on CentOS 7

Mod_GeolP is an Apache module that can be used to get the geographic location of IP address of
the visitor into the Apache web server. The module allows you to determine the visitor’'s country
and location. It is specially useful for Geo Ad Serving, Target Content, Spam Fighting, Fraud
Detection, Redirecting/Blocking visitors based on their country and much more.

GeolP module allows system administrators to redirect or block web traffic according on the client
geographical location. The geographical location is learned via client IP address.

Mod_GeolP has two versions, one is Free and another one is Paid.

Enable EPEL Repository

Mod_Geoip is not available under official repository, install and enable third party EPEL repository.

yum install epel-release

Install Mod_GeolP

Once you've EPEL repository enabled on your system, you can simple install mod_geoip by
running following command with their dependency packages.

yum install mod_geoip GeolP GeolP-devel GeolP-data zlib-devel

Download latest Geo Databases

It's good idea to download latest Geo City and Country Database to stay updated.

cd /usr/share/GeolP/

mv GeolP.dat GeolP.dat_org

wget http://geolite.maxmind.com/download/geoip/database/Geolite2-Country.tar.gz
wget http://geolite.maxmind.com/download/geoip/database/GeolLite2-City.tar.gz
gunzip GeolLite2-Country.tar.gz

gunzip Geolite2-City.tar.gz

Enable Mod_GeolP in Apache

After the module has been installed, open and edit the module main configuration file, with a
command line text editor such as vim, and activate the module server-wide, as illustrated in the
below excerpt.

vim /etc/httpd/conf.d/geoip.conf

Set the line GeolPEnable from Off to On. Also, make sure you add the absolute path to GeolP
database file.

<IfModule mod_geoip.c>

GeolPEnable On

GeolPDBFile /usr/share/GeolP/GeolP.dat MemoryCache
</IfModule>

Restart the Apache service to reflect changes.

systemctl restart httpd

If you are running multiple sites, It’s not recommended to turn on GeolP module server-wide. You
should enable the GeolP module only in <Location> or <Directory> blocks where you would actually
perform the traffic redirection or block.

Updating GeolP Database

GeolP database is updated beginning of every month. So, its is very important to keep GeolP
database up-to-date. To download latest version of database use the following command.

cd /usr/share/GeolP/

mv GeolP.dat GeolP.dat_org

wget http://geolite.maxmind.com/download/geoip/database/GeoLite2-Country.tar.gz
wget http://geolite.maxmind.com/download/geoip/database/GeolLite2-City.tar.gz
gunzip GeolLite2-Country.tar.gz

gunzip Geolite2-City.tar.gz

For more information about mod_geoip and its usage can be found at

http://www.maxmind.com/app/mod_geoip.

https://www.maxmind.com/app/mod_geoip

XCP-ng / Citrix Hypervisor

XCP-ng / Citrix Hypervisor

Check boot filesystem

To check the file system of a Citrix XenServer Host, complete the following procedure:

1. Insert the installation CD 1 of the XenServer host into CD-ROM drive where the file system
to check is located.

2. Start the installation process and stop when it displays the Confirm Installation dialog
box and to click Install XenServer. From the message displayed in the dialog box, note
the path for the disk. For example: "Please confirm you wish to proceed: all data on disk
/dev/sda will be destroyed."

3. Press ALT + F2 (you can toggle between the installation screen and the command
prompt using ALT + F1 and ALT + F2). It prompts you to log on. Log on as the root user
and the following prompt is displayed:

[root@(none)~1#

4. Run the fsck command as follows:
[root@(none)~]1# fsck /dev/sdal

5. reboot

XCP-ng / Citrix Hypervisor

Generate SSL Certificates

Clear the “request was aborted:Could not create ssl/tls secure channel” error.

Issue:
The generated SSL cert on the pool master isn’t good enough for Windows 10.

Fix:
Make a new certificate.

Modify the shell script /opt/xensource/libexec/generate_ssl_cert and find the section that reads:

openssl genrsa > privkey.rsa
openssl req -batch -new -x509 -key privkey.rsa -days 3650 -config config -out cert.csr

openssl dhparam 512 > dh.pem

Change it to the following:

openssl genrsa 1024 > privkey.rsa
openssl req -batch -new -x509 -key privkey.rsa -days 3650 -config config -out cert.csr

openss| dhparam 1024 > dh.pem

Run the following commands

mv /etc/xensource/xapi-ssl.pem /etc/xensource/xapi-ssl.pem.bak
/opt/xensource/libexec/generate_ssl_cert "/etc/xensource/xapi-ssl.pem" $(hostname -f)

xe-toolstack-restart

You should see it generating 1024 bit keys.

A reboot might be needed.

XCP-ng / Citrix Hypervisor

Install - Network

Requirements

The PXE server requires a Dynamic Host Configuration Protocol (DHCP) server to provide IP
addresses to the PXE-booting systems, and either an NFS, FTP, or an HTTP server to house the
installation files. Files can all co-exist on the same server, or be distributed on different servers on
the network. Each XCP host needs a PXE boot-enabled Ethernet card.

TFTP setup: For tips on installing a TFTP server see Tech Notes.

A copy of the extracted ISO file should be accessible by the host via http. This path could also be
used for rolling pool upgrades. See Tech notes for additional steps and features for configuring
local repositories.

PXELinux

Add an XCP entry into pxelinux.cfg/default

LABEL xcp

MENU LABEL XCP-ng

KERNEL mboot.c32

APPEND xcp/xen.gz dom0_max_vcpus=1-2 dom0_mem=1024M,max:1024M com1=115200,8n1

console=com1,vga --- xcp/vmlinuz xencons=hvc console=hvc0 console=tty0 install --- xcp/install.img

Copy the files mboot.c32 from /usr/lib/syslinux to the /var/lib//tftboot directory.

Copy the files install.img, vmlinuz*, and all files in the boot directory from the installation CD to
/var/lib/tftpboot/xcp.

The xcp directory should look simalar to this:

XCp/[ITITI<- Most of these files come from /boot on the .iso
— efiboot.img

F— gcdx64.efi

F— grubx64.efi

— install.img[IT]<- This is /install.img on the .iso

— isolinux

| — boot.cat

| —isolinux.bin

| F—isolinux.cfg

| — mboot.c32[TI<- From /boot/pxelinux on the iso
| F— memtest[1]

| — menu.c32[Ti<- From /boot/pxelinux on the iso
| F—pg_help

| pg_main

|

L— splash.lss

F— vmlinuz

L— xen.gz

Answer files

The Answerfile documentation is lacking at the Citrix website. Somethings you'll just have to
experiment with.

A simple Answerfile.

<?xml version="1.0"?>

<installation>
<keymap=>en-us</keymap>
<primary-disk>sda</primary-disk>
<guest-disk>sdb</guest-disk>
<root-password>StrongPassword</root-password>
<source type="url">http://fqdn-or-ip/xcp/76/</source>
<admin-interface name="eth0" proto="dhcp" />
<timezone>America/New_York</timezone>

</installation>

XCP-ng / Citrix Hypervisor

Install - Physical Media

XenServer installation overview.

All hosts have at least one IP address associated with them. To configure a static IP address for the
host (instead of using DHCP), have the static IP address and hosthame on hand before beginning
this procedure.

To install the XenServer host:

1. Burn the installation files for XenServer to a CD or use a USB boot drive

N

© N U kW

Back up data you want to preserve. Installing XenServer overwrites data on any hard
drives that you select to use for the installation.

Insert the installation CD into the DVD drive of the host computer.

Restart the host computer.

Boot from the DVD drive or USB

Following the initial boot messages

Select Ok to do a clean installation.

If you have multiple hard disks, choose a Primary Disk for the installation. Select Ok.

Choose which disks you want to use for virtual machine storage. Choose Ok.

0.
10.
11.
12.
13.
14.

15.

Set up the management interface to use to connect to XenCenter.
Configure the Management NIC IP address with a static IP address
Specify the hostname and the DNS configuration

Follow the remaining installation screens

Select Install XenServer.

From the Installation Complete screen, eject the installation CD from the drive, and then
select *Ok to reboot the server.

Finish configuration using XenCenter

1. Apply latest patches

2. Create new pool

3. Configure Networking

4. Join other nodes to pool

XCP-ng / Citrix Hypervisor

Networking

Command line tools for XenServer host networking.

Master

Slave

Reset slave host networking

xe-reset-networking --mode= static --ip=$ip --netmask=$mask --gateway=$gateway --dns=%$dns --

master=$masterip

Pool

XCP-ng / Citrix Hypervisor

Storage Repositories

New local SR

xe sr-create host-uuid=<uuid> content-type=user name-label="<name>"\ shared=false device-
config:device="</dev/disk/by-id/device>" type=ext

Fixes

Fix the Command not permitted while global/metadata _read only is set message when removing
Ivm partitions or pv.

pvremove /dev/sda --config global{metadata_read_only=0}

XCP-ng / Citrix Hypervisor

VM Networking

Change Network

xe vm-list

Copy the uuid for the VM you want to remove the interface.

xe vif-list vm-uuid=<vm-uuid>

Copy the uuid for the vif you want to destroy.

xe vif-destroy uuid=<vif-uuid>

Note you will need to know which device you want to remove if there is more than one interface
attached to the VM.

Add:

xe network-list ("name-label=<label>")

Copy the networks uuid.
xe vif-create network-uuid=<network-uuid> vm-uuid=<vm-uuid> device=0

Assign IP addressing to VM

xe vm-param-set uuid=8bc00eab-9f3e-4e9c-c7bb-f0ldfabc758d xenstore-data:vm-data/ip=10.10.0.89 xenstore-
data:vm-data/netmask=255.255.255.0 xenstore-data:vm-data/gateway=10.10.0.2 xenstore-data:vm-

data/dns=10.10.0.3

XCP-ng / Citrix Hypervisor

ZFS

If you do this, you will break something. DO NOT run production on this SR. If you do, | hope you
trust your backups.

Install/enable ZFS on your hosts

On each host that you want to run ZFS:

yum install --enablerepo="xcp-ng-extras" blktap vhd-tool

Install ZFS packages built for XCP-ng: (check version)

yum install --enablerepo="xcp-ng-extras" kmod-spl-4.4.0+10 kmod-zfs-4.4.0+10 spl zfs
Enable the module with

depmod -a && modprobe zfs .

Create a new ZFS pool:

Create the new SR.

Disable sync.

zfs set sync=disabled tank

