Evergreen ILS on Ubuntu
18.04

Evergreen is highly-scalable software for libraries that helps library patrons find library materials,
and helps libraries manage, catalog, and circulate those materials, no matter how large or complex
the libraries.

Evergreen is open source software, licensed under the GNU GPL, version 2 or later.

Learn more here. This guide will be on an Ubuntu 18.04 server.

Some reference for the installation

e The user Linux account is the account that you use to log onto the Linux system as a
regular user.

e The root Linux account is an account that has system administrator privileges. Look for #
on the console. Sometimes sudo will be used to run single commands as the root user.

e The opensrf Linux account is an account that you will create as part of installing
OpenSRF.

e The minimum supported version of OpenSRF is 3.0.0.

e PostgreSQL is required The minimum supported version is 9.4.

e The postgres Linux account is created automatically when you install the PostgreSQL
database server.

e The evergreen PostgreSQL account is a superuser that you will create to connect to the
database server.

e The egadmin Evergreen account is an administrator account for Evergreen.

° @]

OpenSRF

First download and unpack the OpenSRF source as the Linux user.

wget https://evergreen-ils.org/downloads/opensrf-3.1.0.tar.gz
tar -xvf opensrf-3.1.0.tar.gz

cd opensrf-3.1.0/

https://evergreen-ils.org/about-us/

Issue the following commands from the opensrf folder as the root Linux account to install
prerequisites.

sudo apt-get install make

sudo make -f src/extras/Makefile.install ubuntu-bionic

As the Linux user, use the configure command to configure OpenSRF, and the make command to
build OpenSRF. The default installation prefix (PREFIX) for OpenSRF is /opensrf/ .

.Jconfigure --prefix=/openils --sysconfdir=/openils/conf

make

If there were no build errors, then as root run the make install.

sudo make install

Create the opensrf user as the root user.

sudo useradd -m -s /bin/bash opensrf
sudo su -c 'echo "export PATH=\$PATH:/openils/bin" >> /home/opensrf/.bashrc’
sudo passwd opensrf

sudo chown -R opensrf:opensrf /openils
Define your public and private OpenSRF domains.
This is a single server setup so the /etc/hosts file will be used to add the public and private

addresses.
Use the root user to add the following to /etc/hosts file.

127.0.1.2 public.localhost public
127.0.1.3 private.localhost private

Adjusting the system dynamic library path.

sudo su -c ‘echo /openils/lib > /etc/Id.so.conf.d/opensrf.conf’

sudo Idconfig

OpenSRF requires an XMPP (Jabber) server. The ejabberd packages will be used.
First stop the existing service.

sudo systemctl stop ejabberd.service

Open /etc/ejabberd/ejabberd.yml and make the following changes as the root user:

If you don't want to edit this file, download a preconfigured one fromhere

1. Define your public and private domains in the hosts directive. For example:

host s:
- "l ocal host"
- "private.local host"
- "public.local host"

Change starttls_required to false

Change auth_password format to plain

Change shaper: normal and fast values to 500000
Increase the max_user_sessions: all: value to 10000
Comment out the mod offline directive

o Uk WwWwN

##mod_offline:

##access_max_user_messages: max_user_offline_messages
7. Uncomment the mod_legacy auth directive

Or use the downloaded file.

sudo mv /etc/ejabberd/{ejabberd.yml,ejabberd.yml.org}
sudo wget -O /etc/ejabberd/ejabberd.yml https://git.clusterapps.com/snippets/6/raw

Start the ejabberd server:

sudo systemctl start ejabberd.service
On each domain, you need two Jabber users to manage the OpenSRF communications:

e a router user, to whom all requests to connect to an OpenSRF service will be routed; this
Jabber user must be named router

e an opensrf user, which clients use to connect to OpenSRF services; this user can be
named anything.

sudo ejabberdctl register router private.localhost UseARealPasswordNotthisone
sudo ejabberdctl register opensrf private.localhost UseARealPasswordNotthisone
sudo ejabberdctl register router public.localhost UseARealPasswordNotthisone

sudo ejabberdctl register opensrf public.localhost UseARealPasswordNotthisone

As the opensrf Linux account, copy the example configuration files to create your locally OpenSRF
configuration.

https://git.clusterapps.com/snippets/6/raw

sudo su - opensrf
cd /openils/conf
cp opensrf_core.xml.example opensrf_core.xml

cp opensrf.xml.example opensrf.xml

Edit opensrf core.xml file to update the username / password pairs to match the Jabber user
accounts you created.

1. <config><opensrf> = use the private Jabber opensrf user

2. <config><gateway> = use the public Jabber opensrf user

3. <config><routers><router> = use the public Jabber router user
4. <config><routers><router> = use the private Jabber router user

Enable the opensrf Linux account to use srfsh as the opensrf user.

cp /openils/conf/srfsh.xml.example /home/opensrf/.srfsh.xml

Update the password to match the password you set for the Jabber opensrf user at the
private.localhost domain.

vim /home/opensrf/.srfsh.xml

Start all OpenSRF services as the opensrf Linux account.

osrf_control --localhost --start-all

1. Start the srfsh interactive OpenSRF shell by issuing the following command as the
opensrf Linux account:
Starting the srfsh interactive OpenSRF shell

srfsh

2. Issue the following request to test the opensrf.math service:

srfsh# request opensrf.nmath add 2,2
You should receive the value 4.

Install WebSockets as the root user.

apt-get install git-core

cd /tmp

git clone https://github.com/disconnect/apache-websocket
cd apache-websocket

apxs2 -i -a -c mod_websocket.c

Create the websocket Apache instance

sh /usr/share/doc/apache2/examples/setup-instance websockets

Remove from the main apache instance

a2dismod websocket

Change to the directory into which you unpacked OpenSRF, then copy config files.

cp examples/apache_24/websockets/apache2.conf /etc/apache2-websockets/

Add configuration variables to the end of /etc/apache2-websockets/envvars.

export OSRF_WEBSOCKET_IDLE_TIMEOUT=120

export OSRF_WEBSOCKET IDLE_CHECK_INTERVAL=5

export OSRF_WEBSOCKET_CONFIG_FILE=/openils/conf/opensrf_core.xml
export OSRF_WEBSOCKET_CONFIG_CTXT=gateway

export OSRF_WEBSOCKET_MAX_REQUEST_WAIT_TIME=600

Before you can start websockets, you must install a valid SSL certificate in /etc/apache2/ssl/ .

Evergreen application

Download and extract the archive as the Linux user.

wget https://evergreen-ils.org/downloads/Evergreen-ILS-3.3.0.tar.gz
tar -xvf Evergreen-ILS-3.3.0.tar.gz
cd Evergreen-ILS-3.3.0/

Issue the following commands as the root Linux account to install prerequisites using the
Makefile.install prerequisite installer

make -f Open-ILS/src/extras/Makefile.install ubuntu-bionic

From the Evergreen source directory, issue the following commands as the user Linux account to
configure and build Evergreen:

PATH=/openils/bin:$PATH ./configure --prefix=/openils --sysconfdir=/openils/conf

make

Issue the following command as the root Linux account to install Evergreen

sudo make install

Change ownership of the Evergreen files

sudo chown -R opensrf:opensrf /openils

Run Idconfig as the root Linux account.

sudo Idconfig

Issue the following commands as the root Linux account to copy the Apache configuration files
from the Evergreen source archive.

sudo cp Open-ILS/examples/apache_24/eg_24.conf /etc/apache2/sites-available/eg.conf
sudo cp Open-ILS/examples/apache_24/eg_vhost 24.conf /etc/apache2/eg_vhost.conf
sudo cp Open-ILS/examples/apache_24/eg startup /etc/apache2/

As the root Linux account, edit the eg.conf file that you copied.

To enable access to the offline upload / execute interface from any workstation on any network,
make the following change (and note that you must secure this for a production instance):

e Replace Require host 10.0.0.0/8 with Require all granted

As the root Linux account, edit /etc/apache2/envvars . Change export APACHE_ RUN_USER=www-data to
export APACHE_RUN_USER=opensrf .

As root edit /etc/apache2/apache2.conf and make the following changes.

sudo vim /etc/apache2/apache2.conf

1. Change KeepAliveTimeout to 1.
2. Change MaxKeepAliveRequests to 100 .

As the root Linux account, configure the prefork module to start and keep enough Apache servers
available to provide quick responses to clients.

sudo vim /etc/apache2/mods-available/mpm_prefork.conf

<IfModule mpm_prefork_module>
StartServers 15
MinSpareServers 5

MaxSpareServers 15

MaxRequestWorkers 75
MaxConnectionsPerChild 500
</IfModule>

As the root user, enable the mpm_prefork module:

sudo a2dismod mpm_event

sudo a2zenmod mpm_prefork

As the root Linux account, enable the Evergreen site:

sudo a2dissite 000-default

sudo a2ensite eg.conf

As the root Linux account, enable Apache to write to the lock directory

sudo chown opensrf /var/lock/apache2

To configure OpenSRF for Evergreen, issue the following commands as the opensrf Linux account.
(Yes you did edit these files earlier but now there are more settings)

cp -b /openils/conf/opensrf _core.xml.example /openils/conf/opensrf _core.xml

cp -b /openils/conf/opensrf.xml.example /openils/conf/opensrf.xml

Edited the opensrf core.xml as the opensrf user and enter the same passwords from the OpenSRF
install steps.

To enable the default set of hooks, issue the following command as the opensrf Linux account:

cp -b /openils/conf/action_trigger filters.json.example /openils/conf/action_trigger_filters.json

Evergreen database

In production environments, this would be on a dedicated server or cluster. For this deployment the
database will be on the same server. If you are serious about your setup you would never install
the application and the database on the same server. This is for testing only. For the best
performance, run PostgreSQL on RHEL or Solaris.

Installing PostgreSQL server packages as root. Use the Makefile provided in the Evergreen archive.

sudo make -f Open-ILS/src/extras/Makefile.install postgres-server-ubuntu-bionic

Issue the following command as the postgres Linux account to create a new PostgreSQL
superuser named evergreen .

sudo su - postgres

Ccreateuser -s -P evergreen

Issue the following command as the root Linux account from inside the Evergreen source
directory, replacing <user>, <password>, <hostname>, <port>, and <dbname> with the
appropriate values for your PostgreSQL database (where <user> and <password> are for the
evergreen PostgreSQL account you just created), and replace <admin-user> and <admin-pass>
with the values you want for the egadmin Evergreen administrator account:

perl Open-ILS/src/support-scripts/eg_db_config --update-config \
--service all --create-database --create-schema --create-offline \
--user <user> --password <password> --hostname <hostname> --port <port>\

--database <dbname> --admin-user <admin-user> --admin-pass <admin-pass>

If you add the --load-all-sample parameter to the eg db _config command, a set of authority and
bibliographic records, call numbers, copies, staff and regular users, and transactions will be loaded
into your target database. This sample dataset is commonly referred to as the concerto sample
data, and can be useful for testing out Evergreen functionality and for creating problem reports
that developers can easily recreate with their own copy of the concerto sample data.

Starting Evergreen

Start the memcached and ejabberd services

sudo systemctl enable --now ejabberd

sudo systemctl enable --now memcached

As the opensrf Linux account, start Evergreen. The -1 flag in the following command is only
necessary if you want to force Evergreen to treat the hostname as localhost ;

osrf_control -| --start-all

if you configured opensrf.xml using the real hostname of your machine as returned by perl -
ENet::Domain 'print Net::Domain::hostfgdn() . "\n";' , you should not use the -I flag. In a multi server setup,
do not use localhost.

As the opensrf Linux account, generate the Web files needed by the web staff client and catalogue
and update the organization unit proximity. Do this the first time you start Evergreen, and after
that each time you change the library org unit configuration.

autogen.sh

As the root Linux account, restart the Apache Web server:

systemctl restart apache2

Testing connections

Once you have installed and started Evergreen, test your connection to Evergreen via srfsh .
As the opensrf Linux account. <admin-user> <admin-pass> are the egadmin username and
password created earlier.

/openils/bin/srfsh

srfsh% login <admin-user> <admin-pass>

The output should look like this:

HHHUHHHHHHHHRAHHHHH BB HHRAHH R HBHHHHH R HHHHHHBHH
Received Data: "$2a$10$londKQogYvvF71H92Wwpme"

Request Completed Successfully
Request Time in seconds: 0.052501

Received Data: {

"ilsevent":0,

"textcode":"SUCCESS",

"desc":"Success",

"pid":32474,

"stacktrace":"oils_auth.c:636",

"payload":{
"authtoken":"bd4f67a646ee4c39e€923a272dc6c79a3",
"authtime":420

Request Completed Successfully
Request Time in seconds: 0.171812

Login Session: bd4f67a646ee4c39e923a272dc6c79a3. Session timeout: 420.000000

HEABHBHBHHBHBBHB R AR A BB H PR AR A BB HBHHRH BB HBHHS

Revision #1
Created 29 April 2019 22:59:50 by Michael Cleary
Updated 16 February 2022 23:58:51 by Michael Cleary

