vCenter - Linux Templates

To deploy multiple VMs with different hostnames and IP addresses while utilizing the customization
capabilities provided by the vmware guest module in Ansible, you can use VMware's customization
specifications. This approach allows for more advanced customization options, such as setting the
domain, hostname, and network settings directly within the playbook. Below is an example of how
to modify the playbook to use VMware's customization feature for deploying 3 VMs with distinct
configurations:

Inventory

To create a separate inventory file with all the variables used in the provided playbook, you'll need
to organize these variables in a structured way. Ansible inventory files can be in INI or YAML
format, but for complex configurations like this, YAML is more suitable due to its support for
hierarchical data.

Below is an example of how to create an Ansible inventory file in YAML format (inventory.yml) that
defines all the variables required by your playbook. This example demonstrates setting up
variables for deploying three VMs, but you can adjust the quantities and details as needed:

all:
vars:
vcenter_hostname: vcenter.example.com
vcenter_username: admin@vsphere.local
vcenter_password: securepassword
vcenter_datacenter: DC1
vcenter_folder: /DC1/vm/ansible_managed vms
vcenter_cluster: Clusterl
vm_template: CentOS_Template
vm_network: VM_Network
vm_netmask: 255.255.255.0
vm_gateway: 192.168.1.1
dnsO1: 8.8.8.8
dns02: 8.8.4.4
hosts:
vmO1:

vm_name: vmO01

vm_ip: 192.168.1.101
vm_ram: 2048

vm_cores: 2

vm_sockets: 1

vm_notes: "VMO1 Notes"
vm_department: "departmentl”
vm_application: "Application1"
vm_role: "Rolel"

vm_env: "Development"
vm_buildcode: "Build01"
vm_lifecycle: "Lifecyclel"

vm_contact: "Contact1"

vmO02:
vm_name: vmO02
vm_ip: 192.168.1.102
vm_ram: 4096
vm_cores: 4
vm_sockets: 2
vm_notes: "VM02 Notes"
vm_department: "department2"
vm_application: "Application2"
vm_role: "Role2"
vm_env: "Testing"
vm_buildcode: "Build02"
vm_lifecycle: "Lifecycle2"

vm_contact: "Contact2"

vmO03:
vm_name: vmO03
vm_ip: 192.168.1.103
vm_ram: 8192
vm_cores: 4
vm_sockets: 2
vm_notes: "VMO03 Notes"
vm_department: "department3"
vm_application: "Application3"
vm_role: "Role3"

vm_env: "Production”

vm_buildcode: "Build03"
vm_lifecycle: "Lifecycle3"

vm_contact: "Contact3"

Adjusting the Inventory

e Hosts and Variables: The example above assumes you are deploying three VMs (vmo01 ,
vm02 , and vmo03). Each VM has its set of variables defined under hosts . You can add
more VMs or adjust the existing definitions as needed.

e Global Variables: Variables that are common across all VMs are defined under all: vars .
This includes vCenter connection details, network configuration, and Infoblox provider
details. These can be overridden at the host level if necessary.

e Customization: Tailor the inventory to match your environment's specifics, including
vCenter details, template names, network settings, and VM specifications.

This approach allows you to manage your infrastructure as code, making deployments repeatable
and reducing the likelihood of human error.

Playbook: deploy vms.yml

- name: Deploy Multiple VMs on vCenter
hosts: all

gather_facts: false

tasks:
- name: Setting Facts
set_fact:
vm_guest_name: "{{ vm_name | upper }}"

vm_hostname: "{{ vm_name | lower }}"

- name: Deploy or Clone Linux VM
vmware_guest:
hostname: "{{ vcenter_hostname }}"
username: "{{ vcenter_username }}"
password: "{{ vcenter_password }}"
validate_certs: no
datacenter: "{{ vcenter_datacenter }}"

folder: "{{ vcenter_folder }}"

name: "{{ vm_guest_name }}"
cluster: "{{ vcenter_cluster }}"
state: poweredon
template: "{{ vm_template }}"
annotation: "{{ vm_notes }}"
hardware:
memory_mb: "{{ vm_ram }}"
num_cpus: "{{ vm_cores }}"
num_cpu_cores_per_socket: "{{ vm_sockets }}"
networks:
-name: "{{ vm_network }}"
ip: "{{ vm_ip }}"
netmask: "{{ vm_netmask }}"
gateway: "{{ vm_gateway }}"
wait_for_ip_address: yes
wait_for_customization: yes
cdrom:
type: none
customization:
hostname: "{{ vm_hostname }}"
domain: "example.com"
timezone: "America/New_York"
dns_servers:
-"{{ dnsO1 }}"
-"{{ dns02 }}"
delegate_to: localhost

register: vmcreate

- name: Add Custom Attributes to the VM
vmware_guest_custom_attributes:
hostname: "{{ vcenter_hostname }}"
username: "{{ vcenter_username }}"
password: "{{ vcenter_password }}"
validate_certs: no
name: "{{ vm_guest_ name }}"
attributes:
- name: Department

value: "{{ vm_department | default("') }}"

- name: Application

value: "{{ vm_application | default(") }}"
- name: Role

value: "{{ vm_role | default(") }}"
- name: Environment

value: "{{ vm_env | default(") }}"
- name: Automation

value: "Baseline"
- name: buildcode

value: "{{ vm_buildcode | default(") }}"
- name: lifecycle

value: "{{ vm_lifecycle | default(") }}"
- name: Contact

value: "{{ vm_contact | default(") }}"

Explanation of Each Task

1. Setting Facts: Converts the VM name to uppercase and lowercase versions for different
uses, such as the display name in vCenter (vm_guest_name) and the internal hostname of
the VM (vm_hostname).

2. Deploy or Clone Linux VM: Uses the vmware_guest module to either deploy a new VM or
clone an existing one from a template specified in the inventory. This task includes
configuring the VM's hardware specifications, network settings, and customization
specifications like the hostname and DNS settings. It waits for the IP address to be
assighed and customization to complete before proceeding.

3. Add Custom Attributes to the VM: Adds custom attributes to the newly created VM in
vCenter. These attributes can include metadata such as the department, application, role,
and environment the VM is associated with. This helps in organizing and managing VMs
based on these metadata.

Running the Playbook

To run this playbook, use the following command, ensuring you specify the inventory file:

ansible-playbook -i inventory.yml deploy_vms.yml

This command tells Ansible to deploy VMs as configured in inventory.yml , applying the settings and
customizations specified for each VM.

Notes:

e Template Requirements: The template you use must be prepared for customization.
For Linux VMs, ensure VMware Tools is installed, and the Perl scripting language is
available for the customization scripts to run.

e Customization Script: VMware's customization mechanism uses a script that runs on
the first boot. If the customization does not apply, troubleshooting may involve checking
that VMware Tools is correctly installed and that the template is properly prepared for
cloning and customization.

e Ansible and VMware Versions: Ensure you are using recent versions of Ansible and the
VMware modules, as improvements and bug fixes are regularly added.

This method leverages VMware's powerful customization engine, allowing for a wide range of
customization options beyond what was demonstrated here.

Revision #5
Created 1 February 2024 14:31:06 by Michael Cleary
Updated 6 February 2024 13:25:52 by Michael Cleary

